首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18482篇
  免费   42篇
  国内免费   124篇
航空   10046篇
航天技术   5439篇
综合类   244篇
航天   2919篇
  2021年   158篇
  2018年   245篇
  2016年   170篇
  2014年   435篇
  2013年   520篇
  2012年   435篇
  2011年   610篇
  2010年   440篇
  2009年   788篇
  2008年   827篇
  2007年   401篇
  2006年   429篇
  2005年   419篇
  2004年   453篇
  2003年   542篇
  2002年   477篇
  2001年   592篇
  2000年   365篇
  1999年   461篇
  1998年   440篇
  1997年   331篇
  1996年   384篇
  1995年   439篇
  1994年   433篇
  1993年   358篇
  1992年   320篇
  1991年   251篇
  1990年   236篇
  1989年   398篇
  1988年   211篇
  1987年   239篇
  1986年   232篇
  1985年   639篇
  1984年   518篇
  1983年   409篇
  1982年   490篇
  1981年   612篇
  1980年   246篇
  1979年   188篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   187篇
  1974年   181篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components.  相似文献   
192.
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
193.
194.
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line.  相似文献   
195.
We report the results of a 1.4 104s observation of the region of 4U 1323-62 with the EXOSAT ME. The source has a flux of 7–8 10-11 erg/cm2s (2–10 keV) and a power-law spectrum with 1.1 < < 1.8. During our observation, the source showed a symmetric 60% dip in its X-ray flux of R~1 hr. The spectrum hardens during the dip. Inside the dip we observed an X-ray burst with a 2–10 keV peak flux of 7 10-10 erg/cm2s. The burst spectrum is black-body, and shows evidence of cooling during the burst decay. The discovery of a burst from 4U 1323-62 settles the classification of the source; the observation of a dip suggests that we may be able to measure its orbital period in the near future.  相似文献   
196.
A special-purpose adaptive machine is described which carries out estimation in real time of an unknown binary waveform which is perturbed with additive Gaussian noise. Unknown waveforms of over 103 samples in duration can be recovered. The unknown waveforms are of unknown epoch and can reappear at either random or periodic time intervals. The observed signal is received at moderate or low signal-to-noise ratios so that a single observation of the received data (even if one knew the precise signal arrival time) is not sufficient to provide a good estimate of the signal waveshape. Experimental results are described which show transient behavior waveform estimate. The transient behavior is expressed as the number of errors in the current estimate of the signal plotted vs. time. In a noisy environment, each ``learning' transient is a random time function. These learning transients are shown for several different signal-to-noise ratios and indicate the threshold noise levels for various types of initial states of the machine memory.  相似文献   
197.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
198.
The radio observations of Venus are reviewed and compared with theoretical microwave spectra computed for a variety of models of the Venusian environment. The models considered are (a) a CO2-N2 atmosphere, (b) an atmosphere of dust (the aeolosphere model), and (c) a cloud model with various loss mechanisms in the cloud. The effect of polarization on the surface emissivity has been included in all the computations. It is shown how the radio observations place limits upon the acceptable models, for example, the density and size of dust particles required in the aeolosphere model. It is shown how some models place severe restrictions on radar observations at short centimeter wavelengths, thereby emphasizing the importance of such experiments. These same models show that the Mariner II observations can not be interpreted in terms of surface phenomena and provide a new interpretation for the microwave phase effect.This work was supported in part by the U.S. Army, Navy and Air Force under Contract DA36-039-AMC-03200(E); and in part by the National Aeronautics and Space Administration (Grants NsG-250-62 and NsG-419).  相似文献   
199.
200.
For direct measurement of the integrated radiation dose experienced in Earth synchronous orbit, p-i-n diodes were flown as radiation dosimeters on LES-6. The diode, which has a lifetime of 10-4 seconds in the intrinsic region, was originally developed as a neutron dosimeter, but can detect 1-MeV electron fluences as low as 1013 e·cm-2. Observations over three years in orbit are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号