首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4595篇
  免费   8篇
  国内免费   6篇
航空   2198篇
航天技术   1605篇
综合类   16篇
航天   790篇
  2021年   44篇
  2019年   25篇
  2018年   159篇
  2017年   104篇
  2016年   76篇
  2015年   40篇
  2014年   130篇
  2013年   140篇
  2012年   143篇
  2011年   200篇
  2010年   133篇
  2009年   217篇
  2008年   294篇
  2007年   132篇
  2006年   108篇
  2005年   139篇
  2004年   119篇
  2003年   153篇
  2002年   89篇
  2001年   157篇
  2000年   74篇
  1999年   99篇
  1998年   120篇
  1997年   87篇
  1996年   90篇
  1995年   124篇
  1994年   121篇
  1993年   67篇
  1992年   97篇
  1991年   53篇
  1990年   36篇
  1989年   88篇
  1988年   40篇
  1987年   42篇
  1986年   36篇
  1985年   96篇
  1984年   86篇
  1983年   75篇
  1982年   86篇
  1981年   118篇
  1980年   41篇
  1979年   36篇
  1978年   32篇
  1977年   25篇
  1976年   28篇
  1975年   22篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1971年   21篇
排序方式: 共有4609条查询结果,搜索用时 15 毫秒
821.
    
Basic design guidelines are presented for a three-phase tubular linear alternator (LA). A numerical example for the design of a 25 kVA, 14.4 mls, 120/220 V, 60 Hz alternator is used to illustrate the procedure.  相似文献   
822.
    
The motion of a variable-mass spacecraft is considered in the powered section of a descending trajectory. Approximate analytical solutions are obtained for the angles of spatial orientation of the spacecraft, which allows one to analyze the nutation motion and to develop recommendations on the spacecraft’s mass configuration, providing the smallest possible deviations of the longitudinal axis and thrust vector from specified directions. The errors of stabilization of the spacecraft’s longitudinal axis are calculated by means of numerical integration of complete models and using the obtained analytical solutions, the results being in good agreement.  相似文献   
823.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
824.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   
825.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   
826.
827.
  总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   
828.
    
Our understanding of gravitational effects (inertial effects in the vicinity of 1 x g) on cells has matured to a stage at which it is possible to define, on the basis of experimental evidence, extracellular effects on small cells and intracellular effects on eukaryotic gravisensing cells. Yet undetermined is the nature of response, if any, of those classes of cells that are not governed solely by extracellular physical events (as are prokaryotes) and are devoid of obvious mechanical devices for sensing inertial forces (such as those possessed by certain plant cells and sensory cells of animals). This \"in-between\" class of cells needs to be understood on the basis of the combination of intracellular and extracellular gravity-dependent processes that govern experimentally-measurable variables that are relevant to the cell's responses to modified inertial forces. The forces that certain cell types generate or respond to are therefore compared to those imposed by approximately 1 x g in the context of cytoskeletal action and symmetry-breaking pathways.  相似文献   
829.
830.
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution mm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号