首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6279篇
  免费   19篇
  国内免费   12篇
航空   2998篇
航天技术   2210篇
综合类   21篇
航天   1081篇
  2021年   54篇
  2019年   36篇
  2018年   177篇
  2017年   118篇
  2016年   96篇
  2015年   46篇
  2014年   159篇
  2013年   193篇
  2012年   173篇
  2011年   248篇
  2010年   175篇
  2009年   299篇
  2008年   358篇
  2007年   164篇
  2006年   143篇
  2005年   188篇
  2004年   168篇
  2003年   215篇
  2002年   120篇
  2001年   223篇
  2000年   106篇
  1999年   140篇
  1998年   165篇
  1997年   133篇
  1996年   134篇
  1995年   180篇
  1994年   176篇
  1993年   100篇
  1992年   127篇
  1991年   63篇
  1990年   54篇
  1989年   129篇
  1988年   66篇
  1987年   60篇
  1986年   62篇
  1985年   153篇
  1984年   139篇
  1983年   106篇
  1982年   143篇
  1981年   170篇
  1980年   54篇
  1979年   44篇
  1978年   58篇
  1977年   33篇
  1976年   33篇
  1975年   43篇
  1974年   38篇
  1973年   37篇
  1972年   37篇
  1971年   30篇
排序方式: 共有6310条查询结果,搜索用时 12 毫秒
271.
Several design and testing aspects of the TRIO smart sensor data acquisition chip, developed by JHU/APL for NASA spacecraft applications are presented. TRIO includes a 10 bit self-corrected analog-to-digital converter (ADC), 16/32 analog inputs, a front end multiplexer with selectable aquisition time, a current source, memory, serial and parallel bus, and control logic. So far TRIO is used in many missions including Contour, Messenger, Stereo, Pluto, and the generic JPL X2000 spacecraft bus.  相似文献   
272.
Polar format algorithm for bistatic SAR   总被引:4,自引:0,他引:4  
Matched filtering (MF) of phase history data is a mathematically ideal but computationally expensive approach to bistatic synthetic aperture radar (SAR) image formation. Fast backprojection algorithms (BPAs) for image formation have recently been shown to give improved O(N/sup 2/ log/sub 2/N) performance. An O(N/sup 2/ log/sub 2/N) bistatic polar format algorithm (PFA) based on a bistatic far-field assumption is derived. This algorithm is a generalization of the popular PFA for monostatic SAR image formation and is highly amenable to implementation with existing monostatic image formation processors. Limits on the size of an imaged scene, analogous to those in monostatic systems, are derived for the bistatic PFA.  相似文献   
273.
A command and control (C/sup 2/) problem for military air operations is addressed. Specifically, we consider C/sup 2/ problems for air vehicles against ground-based targets and defensive systems. The problem is viewed as a stochastic game. We restrict our attention to the C/sup 2/ level where the problem may consist of a few unmanned combat air vehicles (UCAVs) or aircraft (or possibly teams of vehicles), less than say, a half-dozen enemy surface-to-air missile air defense units (SAMs), a few enemy assets (viewed as targets from our standpoint), and some enemy decoys (assumed to mimic SAM radar signatures). At this low level, some targets are mapped out and possible SAM sites that are unavoidably part of the situation are known. One may then employ a discrete stochastic game problem formulation to determine which of these SAMs should optimally be engaged (if any), and by what series of air vehicle operations. We provide analysis, numerical implementation, and simulation for full state-feedback and measurement feedback control within this C/sup 2/ context. Sensitivity to parameter uncertainty is discussed. Some insight into the structure of optimal and near-optimal strategies for C/sup 2/ is obtained. The analysis is extended to the case of observations which may be affected by adversarial inputs. A heuristic based on risk-sensitive control is applied, and it is found that this produces improved results over more standard approaches.  相似文献   
274.
Limits in tracking with extended Kalman filters   总被引:1,自引:0,他引:1  
The classical linearized conversion of measurements from polar or spherical coordinates to Cartesian ones generates a bias restricting the use of this conversion to cases where the bias can be neglected. In this work, the validity limits for the classical 2D transformation from polar to Cartesian coordinates, as derived in previous work, are shown to be too restrictive and the limits for the 3D transformation from spherical to Cartesian coordinates are introduced. Furthermore, quantitative measures for the performance degradation of the commonly used extended Kalman filter (EKF) in comparison with the best linear unbiased estimation (BLUE) filter are obtained by simulating typical tracking scenarios.  相似文献   
275.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
276.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
277.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
278.
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing material equilibrium phases, is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.  相似文献   
279.
280.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号