EPONA is an energetic particle detector system incorporating totally depleted silicon surface barrier layer detectors. Active and passive background shielding will be employed and, by applying various techniques, particles of different species, including electrons, protons, alpha particles and pick-up ions of cometary origin may be detected over a wide spectrum of energies extending from the tens of KeV into the MeV range.
The instrument can operate in two modes namely (a) in a cruise phase or storage mode and (b) in a real time mode. During the real time mode, observations at high spatial (octosectoring) and temporal (0.5s) resolution in the cometary environment permit studies to be made of accelerated particles at the bow shock and/or in the tail of the comet. In conjunction with magnetic field measurements on board Giotto, observations of energetic electrons and their anisotropies can determine whether the magnetic field lines in the cometary tail are open or closed. Further, the absorption of low energy solar particles in the cometary atmosphere can be measured and such data would provide an integral value of the pertaining gas and dust distribution. Solar particle background measurements during encounter may also be used to correct the measurements of other spacecraft borne instruments potentially vulnerable to such radiation.
Solar particle flux measurements, obtained during the cruise phase will, when combined with simultaneous observations made by other spacecraft at different heliographic longitudes, provide information concerning solar particle propagation in the corona and in interplanetary space. 相似文献
Effects of variable thermal properties (specific heat and thermal conductivity) of the solid phase on the combustion of composite solid propellants are studied analytically. Both steady and unsteady burning are considered. It is shown that the effects of variable thermal properties are small and can be accounted for by choosing proper average values of specific heat and thermal conductivity. 相似文献
P.L. Boglar (see ibid., vol.AES-23, no.3, p.298-310, May 1987) developed a recursive formulation of the Chan, Hu, and Plant (CHP) algorithm, and the results of the simulation verified the performance improvements. The commenter claims that Bogler obtained an incorrect recursive formulation of input estimation because he incorrectly used the formulation of the Kalman filter. The commenter presents calculations that aim to demonstrate this claim 相似文献
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System. 相似文献
High resolution Hα images and magnetograms (0.2 arc s) of an active region were obtained in alternating time series at 42 s cadences using the Swedish 1-m Solar Telescope on 2004 August 21. The Hα filtergrams reveal an active region filament and surges consisting of thread-like structures which have widths similar to the widths of chromospheric fibrils, both recorded down to the resolution limit in the best images. All observed structures in the active region appear highly dynamic. Fibrils show counterstreaming strongly resembling the counterstreaming threads in filaments. 相似文献
The impact of microgravity and other stressors on cognitive performance need to be quantified before long duration space flights are planned or attempted since countermeasures may be required. Four astronauts completed 38 sessions of a 20-minute battery of six cognitive performance tests on a laptop computer. Twenty-four sessions were preflight, 9 sessions were in-orbit, and 5 sessions were postflight. Mathematical models of learning were fit to each subject's preflight data for each of 14 dependent variables. Assuming continued improvement, expected values were generated from the models for in-orbit comparison. Using single subject designs, two subjects showed statistically significant in-orbit effects. One subject was degraded in two tests, the other was degraded in one test and exceeded performance expectations in another. Other subjects showed no statistically significant effects on the tests. The factors causing the deterioration in the two subjects can not be determined without appropriate ground-based control groups. 相似文献
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized. 相似文献