首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4764篇
  免费   11篇
  国内免费   10篇
航空   2283篇
航天技术   1650篇
综合类   17篇
航天   835篇
  2021年   48篇
  2019年   28篇
  2018年   172篇
  2017年   106篇
  2016年   76篇
  2015年   45篇
  2014年   133篇
  2013年   150篇
  2012年   150篇
  2011年   212篇
  2010年   143篇
  2009年   227篇
  2008年   300篇
  2007年   139篇
  2006年   112篇
  2005年   148篇
  2004年   125篇
  2003年   156篇
  2002年   91篇
  2001年   165篇
  2000年   78篇
  1999年   100篇
  1998年   122篇
  1997年   91篇
  1996年   91篇
  1995年   130篇
  1994年   123篇
  1993年   67篇
  1992年   99篇
  1991年   53篇
  1990年   36篇
  1989年   88篇
  1988年   40篇
  1987年   42篇
  1986年   38篇
  1985年   104篇
  1984年   91篇
  1983年   79篇
  1982年   87篇
  1981年   126篇
  1980年   41篇
  1979年   36篇
  1978年   32篇
  1977年   25篇
  1976年   28篇
  1975年   22篇
  1974年   22篇
  1973年   23篇
  1972年   23篇
  1970年   21篇
排序方式: 共有4785条查询结果,搜索用时 31 毫秒
271.
Prominent among the commonly encountered gyro-stabilized assemblies used in guidance and tracking are those which are eddy-current torqued. Although eddy-current-torquecd lead- computing gunsights, which use spinning mirrors, have been well known for thirty years, it has been difficult to find an analysis of the torques developed by the precession mechanism. In this paper a model configuration of the torquer is presented. The total gyro dynamics are then determined by including these torque terms in the model presented in the preceding paper.  相似文献   
272.
在分析碳纤维增强碳化硅复合材料的力学性能、密度、孔隙率和弯曲强度的基础上 ,进行了超声钻孔工艺试验 ,检测并研究了材料去除率、孔径差、孔边质量和工具损耗情况 ,得出了超声钻孔是一种好的加工方法的结论。  相似文献   
273.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
274.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
275.
Ultraviolet emission line profiles have been measured on 15-29 September 1997 for H I 1216 Å, O VI 1032, 1037 Å and Mg X 625 Å in a polar coronal hole, at heliographic heights ? (in solar radii) between 1.34 and 2.0. Observations of H I 1216 Å and the O VI doublet from January 1997 for ? = 1.5 to 3.0 are provided for comparison. Mg X 625 Å is observed to have a narrow component at ? = 1.34 which accounts for only a small fraction of the observed spectral radiance, and a broad component that exists at all observed heights. The widths of O VI broad components are only slightly larger than those for H I at ? = 1.34, but are significantly larger at ? = 1.5 and much larger for ? > 1.75. In contrast, the Mg X values are less than those of H I up to 1.75 and then increase rapidly up to at least ? = 2.0, but never reach the values of O VI.  相似文献   
276.
Erdos  Géza  Balogh  André  Kóta  József 《Space Science Reviews》2001,97(1-4):221-224
We study the solar cycle, radial, and latitudinal dependence of the characteristics of magnetic field irregularities in the Heliosphere. The frequency of magnetic field discontinuities is determined, using high time resolution magnetic field observations by Ulysses, covering the time interval from 1992 to 2000. The quasi-linear scattering mean free path of particles is also calculated. These investigations aim at understanding/exploring transport properties of energetic charged particles in the Heliosphere. We find that the travel time of solar wind plasma from the Sun to the observer is the key parameter of the process, by controling the decay of the irregularities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
277.
Lin  Naiguo  Kellogg  P.J.  MacDowall  R.J.  Gary  S.P. 《Space Science Reviews》2001,97(1-4):193-196
Observations of ion acoustic waves in the solar wind during the first and second orbit of the Ulysses spacecraft are presented. The observations show variations of the wave activity with the heliolatitude and with the phase of the solar cycle. The interrelationships between the wave intensity and the electron heat flux and the ratio of electron to proton temperature, T e/T p, are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
278.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
279.
At solar maximum, the large-scale structure of the heliospheric magnetic field (HMF) reflects the complexity of the Sun's coronal magnetic fields. The corona is characterised by mostly closed magnetic structures and short-lived, small coronal holes. The axis of the Sun's dipole field is close to the solar equator; there are also important contributions from the higher order terms. This complex and variable coronal magnetic configuration leads to a much increased variability in the HMF on all time scales, at all latitudes. The transition from solar minimum to solar maximum conditions, as reflected in the HMF, is described, as observed by Ulysses during its passage to high southern heliolatitudes. The magnetic signatures associated with the interaction regions generated by short-lived fast solar wind streams are presented, together with the highly disordered period in mid-1999 when there was a considerable reorganisation in coronal structures. The magnetic sector structure at high heliolatitudes shows, from mid-1999, a recognisable two-sector structure, corresponding to a highly inclined Heliospheric Current Sheet. A preliminary investigation of the radial component of the magnetic field indicates that it remains, on average, constant as a function of heliolatitude. Intervals of highly Alfvénic fluctuations in the rarefaction regions trailing the interaction regions have been, even if intermittently, identified even close to solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
280.
Streamer evaporation is the consequence of heating in ideal MHD models because plasma is weakly contained by the magnetic field. Heating causes inflation, opening of field lines, and release of solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because of losses by thermal conduction and radiation. Heating is also expected to depend on ambient conditions. We use a global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than ∼ 2 × 106 K. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号