首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
航空   25篇
航天技术   21篇
航天   6篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   5篇
  2014年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   2篇
  2006年   6篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  1999年   5篇
  1989年   4篇
  1980年   1篇
排序方式: 共有52条查询结果,搜索用时 187 毫秒
31.
From analysis of the photometric ellipticity effect in seven well-understood detached close binary systems, empirical values of the exponent α of gravity-darkening have been practically deduced for eleven main-sequence components of spectral types A, F and G which should cover the range of structural change (from radiative to convective) in stellar atmospheres. The result indicate that values of the exponent diminish gradually with decreasing effective temperatures from α ~ 1.0 for radiative atmospheres with T > 8500 K to α = 0.2 ~ 0.3 for convective atmospheres with T < 6500 K, in spite of some uncertainty in the reflection correction process.  相似文献   
32.
Although rotating neutron stars (NSs) have been regarded as being textbook examples of astrophysical particle acceleration sites for decades, details of the acceleration mechanism remain a mystery; for example, we cannot yet observationally distinguish “polar cap” models from “outer gap” models. To solve the model degeneracy, it is useful to study similar systems with much different physical parameters. Strongly magnetized white dwarfs (WDs) are ideal for this purpose, because they have essentially the same system geometry as NSs, but differ largely from NSs in the system parameters, including the size, magnetic field, and the rotation velocity, with the induced electric field expected to reach 1013–1014 eV. Based on this idea, the best candidate among WDs, AE Aquarii, was observed with the fifth Japaneses X-ray satellite, Suzaku. The hard X-ray detector (HXD) on-board Suzaku has the highest sensitivity in the hard X-ray band over 10 keV. A marginal detection in the hard X-ray band was achieved with the HXD, and was separated from the thermal emission. The flux corresponds to about 0.02% of its spin-down energy. If the signal is real, this observation must be a first case of the detection of non-thermal emission from WDs.  相似文献   
33.
The Multiband Imager (MI) is a high-resolution, multi-spectral imaging instrument for lunar exploration. It consists of two cameras, VIS and NIR, and is carried on the SELenological and ENgineering Explorer (SELENE), launched on Sep. 14, 2007. During the observation from January 2008 to June 2009, MI acquired about 450,000 scenes of multispectral image. The radiometric properties of the cameras were characterized using the pre-flight data derived in laboratory experiments with a calibrated integrating sphere. Twelve light source sets were used to examine the S/N ratio, linearity, and saturation level of the cameras. The dark field signal is quite stable in both cameras, having a noise level of less than 1 DN (VIS) and 2 DN (NIR). The fluctuation in the light field is also low (<2 DN), indicating that the spatial nonuniformity in the camera responses can be removed using a flat field. In order to remove the smear signals due to the frame transfer in the VIS data, we developed an iterate algorithm using all bands in the VIS camera. The S/N ratio, which is critical to the precision of the product, is estimated to exceed 160 for the VIS bands and 400 for the NIR bands under low illumination conditions (5% of lunar surface reflectance). Based on the S/N ratio, the radiometric error due to the noise is calculated to be less than 0.7% for VIS and 0.2% for NIR. The relationship between input and output of the VIS camera is linear with a residual of less than 0.6 DN, corresponding to a radiometric error of 0.3%. The NIR exhibits a non-linear response to the input radiance. A cubic function best fits the pre-flight data with an average residual of 8 DN (corresponds to an error of 0.8%). Validation using in-flight data indicated that the instability of the dark output has not changed, but the level of dark output has slightly changed in the NIR bands (less than 6 DN). The pixel-to-pixel sensitivity variation in the orbit has been changed from that in the pre-flight experiment. The difference between the in-flight data and the pre-flight data ranges within ±2%. There is also a small (less than ±1%) but nonnegligible difference between in-flight data of different cycles in both the VIS and NIR bands, suggesting that the coefficient for spatial ununiformity correction needs to be calculated for each cycle.  相似文献   
34.
Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, making them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important consequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from \(\sim10^{-3}~\mbox{km}\) to \(\sim10^{3}~\mbox{km}\), with a focus on recent developments in this field.  相似文献   
35.
Spectroscopic observations were performed of the early-type contact binary AW Lac with an image-intensified coude spectrograph of 1.9-m telescope at the Okayama Astrophysical Observatory. A total of twenty-two spectra covering blue region with a dispersion of 16 Amm-1 have been secured on Kodak IIa-O baked plates. In every spectra sharp interstellar CaII H,K lines are clearly seen. The spectral type of AW Lac has been estimated as early B, which substantially confirms the one adopted in the photometric analysis by Jiang et al. (1983) and is diffrent from A0 listed in General Catalogue of Variable Stars (Kholopov et al. 1985). Contrary to the suggestion by the photometric solution of Jiang et al., no definite secondary lines could be separated, though some indications of light contamination due to the secondary component are surely observed. This would imply that the light ratio of the components should be somewhat smaller than that derived by photometric analysis. No emission features appeared either. The measurement of radial velocities of the primary component for the orbital elements was made for twenty spectra by a conventional method. It was difficult to measure the radial velocities because the lines are quite broadened and deformed. Hence the measured values for the radial velocities should be regarded as rather preliminary. The derived spectroscopic elements, combined with the photometric data, give the absolute dimensions of the system for each assumed mass ratio q. For q = 1, being the adopted photometric solution by Jiang et al., we obtain too small value for the primary's mass, comparing with its spectral type. For the mass ratio as small as q = 0.6, we can obtain a reasonable value for the mass of the primary. However, in order to get more definite conclusion the cross-correlation method would be more appropriate for the spectroscopic analysis of this system.  相似文献   
36.
Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury’s tenuous atmosphere and (2) the reflectance spectrum of Mercury’s surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30–150 nm with the field of view of 5.0°, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics.  相似文献   
37.
Kelvin-Helmholtz Instability (KHI) is an MHD-scale instability that grows in a velocity shear layer such as the low-latitude boundary layer of the magnetosphere. KHI is driven unstable when a velocity shear is strong enough to overcome the stabilization effect of magnetic field. When the shear is significantly strong, vortices in the nonlinear stage of KHI is so rolled-up as to situate magnetospheric plasma outward of the magnetosheath plasma and vice versa. The big question is if such highly rolled-up vortices contribute significantly to the plasma transport across the boundary and to the filling of the plasma sheet by cool magnetosheath component, which is observed under northward Interplanetary Magnetic Field (IMF) condition. Here we review our recent results from two-fluid simulations of MHD-scale KHI with finite electron inertia taken into account. The results indicate that there is coupling between the MHD-scale dynamics and electron-scale dynamics in the rolled-up stage of the vortices. While the details differ depending on the initial magnetic geometry, the general conclusion is that there is significant modification of the MHD-scale vortex flow pattern via coupling to the micro-physics. The kick-back from the parasitic micro-physics enhances highly the potential for large-scale plasma mixing of the parent MHD-scale vortices, which is prohibited by definition in ideal-MHD. We also review our recent 3-D MHD simulation results indicating that KHI vortex can indeed roll-up in the magnetotail-flank situation despite the strong stabilization by the lobe magnetic field. These results encouraged us to search for evidence of rolled-up vortices in the Cluster formation flying observations. As reviewed in this paper, a nice event was found during northward IMF interval. This interval is when the plasma transport via large scale reconnection becomes less efficient. The finding supports the argument that KHI is playing some role in transporting solar wind into the magnetosphere when the normal mode of transport cannot dominate.  相似文献   
38.
Lightning activity in Venus has been a mystery for a long period, although many studies based on observations both by spacecraft and by ground-based telescope have been carried out. This situation may be attributed to the ambiguity of these evidential measurements. In order to conclude this controversial subject, we are developing a new type of lightning detector, LAC (Lightning and Airglow Camera), which will be onboard Planet-C (Venus Climate Orbiter: VCO). Planet-C will be launched in 2010 by JAXA. To distinguish an optical lightning flash from other pulsing noises, high-speed sampling at 50 kHz for each pixel, that enables us to investigate the time variation of each lightning flash phenomenon, is adopted. On the other hand, spatial resolution is not the first priority. For this purpose we developed a new type of APD (avalanche photo diode) array with a format of 8×8. A narrow band interference filter at wavelength of 777.4 nm (OI), which is the expected lightning color based on laboratory discharge experiment, is chosen for lightning measurement. LAC detects lightning flash with an optical intensity of average of Earth’s lightning or less at a distance of 3 Rv. In this paper, firstly we describe the background of the Venus lightning study to locate our spacecraft project, and then introduce the mission details.  相似文献   
39.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号