首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   0篇
航空   215篇
航天技术   44篇
航天   65篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   68篇
  2017年   41篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   15篇
  2012年   15篇
  2011年   20篇
  2010年   12篇
  2009年   19篇
  2008年   10篇
  2007年   16篇
  2006年   3篇
  2005年   9篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
141.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   
142.
Lacking plate tectonics and crustal recycling, the long-term evolution of the crust-mantle system of Mars is driven by mantle convection, partial melting, and silicate differentiation. Volcanic landforms such as lava flows, shield volcanoes, volcanic cones, pyroclastic deposits, and dikes are observed on the martian surface, and while activity was widespread during the late Noachian and Hesperian, volcanism became more and more restricted to the Tharsis and Elysium provinces in the Amazonian period. Martian igneous rocks are predominantly basaltic in composition, and remote sensing data, in-situ data, and analysis of the SNC meteorites indicate that magma source regions were located at depths between 80 and 150 km, with degrees of partial melting ranging from 5 to 15 %. Furthermore, magma storage at depth appears to be of limited importance, and secular cooling rates of 30 to 40 K?Gyr?1 were derived from surface chemistry for the Hesperian and Amazonian periods. These estimates are in general agreement with numerical models of the thermo-chemical evolution of Mars, which predict source region depths of 100 to 200 km, degrees of partial melting between 5 and 20 %, and secular cooling rates of 40 to 50 K?Gyr?1. In addition, these model predictions largely agree with elastic lithosphere thickness estimates derived from gravity and topography data. Major unknowns related to the evolution of the crust-mantle system are the age of the shergottites, the planet’s initial bulk mantle water content, and its average crustal thickness. Analysis of the SNC meteorites, estimates of the elastic lithosphere thickness, as well as the fact that tidal dissipation takes place in the martian mantle indicate that rheologically significant amounts of water of a few tens of ppm are still present in the interior. However, the exact amount is controversial and estimates range from only a few to more than 200 ppm. Owing to the uncertain formation age of the shergottites it is unclear whether these water contents correspond to the ancient or present mantle. It therefore remains to be investigated whether petrologically significant amounts of water of more than 100 ppm are or have been present in the deep interior. Although models suggest that about 50 % of the incompatible species (H2O, K, Th, U) have been removed from the mantle, the amount of mantle differentiation remains uncertain because the average crustal thickness is merely constrained to within a factor of two.  相似文献   
143.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   
144.
The results of measurements of absolute flux values and long term temporal evolution of the spatial distribution of trapped He ions in the energy range 1.2 – 9.2 MeV/nucleon below L = 4 are reported. The observations were made with ion counter on board the Japanese OHZORA satellite during the period of January 1984 through March 1987.  相似文献   
145.
With the maturing of space plasma research in the solar system, a more general approach to plasma physics in general, applied to cosmic plasmas, has become appropriate. There are both similarities and important differences in describing the phenomenology of space plasmas on scales from the Earth’s magnetosphere to galactic and inter-galactic scales. However, there are important aspects in common, related to the microphysics of plasma processes. This introduction to a coordinated collection of papers that address the several aspects of the microphysics of cosmic plasmas that have unifying themes sets out the scope and ambition of the broad sweep of topics covered in the volume, together with an enumeration of the detailed objectives of the coverage.  相似文献   
146.
A wide variety of applications can benefit from integrated Inertial Navigation System/Global Positioning System (INS/GPS) technology. However, in many situations, the end user has a preference for a specific GPS receiver. Additionally, in most cases, the user does not desire to expend the time and money necessary to perform a custom INS/GPS integration, but instead wants a low-cost off-the-shelf solution. To address these applications, Boeing has developed the Digital Quartz Inertial Measurement Unit (DQI IMU)-Navigation Processor (DQI-NP) product as an extension of its Miniature Integrated GPS/INS Tactical System (MIGITSTM) family of integrated INS/GPS products. This paper describes the DQI-NP and its application to the OutriderTM Tactical Unmanned Aerial Vehicle (TUAV). The DQI-NP, as currently integrated into the OutriderTM TUAV, is coupled with a custom Trimble GPS receiver combined with major embedded firmware modifications by IntegriNautics. In conjunction with differential GPS and ground based pseudolites, the overall system is intended to provide autonomous landing capability to the Outrider TUAV. DQI-NP provides an available, low-cost, commercial-off-the-shelf/non-development item (COTS/NDI) solution to a variety of commercial and military applications, of which the Outrider TM TUAV is an excellent example  相似文献   
147.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
148.
Introduction: This joint US–Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M (Braslet) occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, effectively reducing the volume in central circulation. The methodology was tested at the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the cuffs, as well as to modified Valsalva and Mueller maneuvers. This case study examines the use of tissue Doppler (TD) of the right ventricular (RV) free wall. Results: Baseline TD of the RV free wall without Braslet showed early diastolic E′ (16 cm/s), late diastolic A′ (14 cm/s), and systolic S′ (12 cm/s) velocities comparable with those in normal subjects on Earth. Braslet application caused 50% decrease of E′ (8 cm/s), 45% increase of A′, and no change to S′. Approximately 8 beats after the Braslet release, TD showed E′ of 8 cm/s, A′ of 12 cm/s, and S′ of 13 cm/s. At this point after release, E′ did not recover to baseline values while l A′ and S′ did recover. The pre-systolic cross-sectional area of the internal jugular vein without Braslet was 1.07 cm2, and 1.13 cm2 10 min after the Braslet was applied. The respective cross-sectional areas of the femoral vein were 0.50 and 0.54 cm2. The RV myocardial performance Tei index was calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time by the ejection time ((IVCT+IVRT)/ET); baseline and Braslet-on values for Tei index were 0.25 and 0.22, respectively. Braslet Tei indices are within normal ranges found in healthy terrestrial subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of the study. Conclusions: TD modality was successfully implemented in space flight for the first time. TD of RV revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower extremity interstitial and vascular space after only 10 min of application. This report demonstrates that Braslet application has an effect on RV physiology in long-duration space flight based on TD, and that this effect is in part due to venous hemodynamics.  相似文献   
149.
We present a review on the interplanetary causes of intense geomagnetic storms (Dst≤−100 nT), that occurred during solar cycle 23 (1997–2005). It was reported that the most common interplanetary structures leading to the development of intense storms were: magnetic clouds, sheath fields, sheath fields followed by a magnetic cloud and corotating interaction regions at the leading fronts of high speed streams. However, the relative importance of each of those driving structures has been shown to vary with the solar cycle phase. Superintense storms (Dst≤−250 nT) have been also studied in more detail for solar cycle 23, confirming initial studies done about their main interplanetary causes. The storms are associated with magnetic clouds and sheath fields following interplanetary shocks, although they frequently involve consecutive and complex ICME structures. Concerning extreme storms (Dst≤−400 nT), due to the poor statistics of their occurrence during the space era, only some indications about their main interplanetary causes are known. For the most extreme events, we review the Carrington event and also discuss the distribution of historical and space era extreme events in the context of the sunspot and Gleissberg solar activity cycles, highlighting a discussion about the eventual occurrence of more Carrington-type storms.  相似文献   
150.
A simulation for flight of international crew on space station took place in Moscow from July 1999 to April 2000 (SFINCS) at the State Biomedical Institute of Russia (IBMP) isolation chambers. Objectives of this study were to identify concepts of psychosocial adaptation and of social interactions to develop an explanation of the transcultural group performance. Method: constructivist epistemology with grounded theory research and fourth generation evaluation were used. Data on processes and interactions were gathered during 110 days of confinement as a subject and extended to 240 days as an outside scientist. Results indicate that coping is influenced by usual coping strategies and coping behaviors inside. Several stresses and human factor issues were identified altering well being and performance inside the chambers. Enabling and limiting forces are discussed. A theory on transcultural group performance is proposed. Issues are raised that appear critical to selection, training and group performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号