首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   0篇
航空   152篇
航天技术   16篇
航天   23篇
  2021年   2篇
  2019年   2篇
  2018年   68篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   15篇
  2010年   11篇
  2009年   5篇
  2008年   8篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  1993年   5篇
  1992年   2篇
  1985年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
151.
JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet’s atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce.  相似文献   
152.
The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight’s heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.  相似文献   
153.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   
154.
155.
We study the 3-D kinematics of a Coronal Mass Ejection (CME) using data acquired by the LASCO C2 and UVCS instruments on board SOHO, and the COR1 coronagraphs and EUVI telescopes on board STEREO. The event, which occurred on May 20, 2007, was a partial-halo CME associated with a prominence eruption. This is the first CME studied with UVCS data that occurred in the STEREO era. The longitudinal angle between the STEREO spacecrafts was ∼7.7° at that time, and this allowed us to reconstruct via triangulation technique the 3-D trajectory of the erupting prominence observed by STEREO/EUVI. Information on the 3-D expansion of the CME provided by STEREO/COR1 data have been combined with spectroscopic observations by SOHO/UVCS. First results presented here show that line-of-sight velocities derived from spectroscopic data are not fully in agreement with those previously derived via triangulation technique, thus pointing out possible limitations of this technique.  相似文献   
156.
Four types of optimal solutions are demonstrated to exist for transfers (time of flight is not fixed) between close near-circular coplanar orbits. One solution is realized with the help of fixed orientation of the propulsion system (PS) along a transversal in the orbital coordinate system. Another is reached at fixed orientation of the PS in the inertial coordinate system. The third and fourth types of solutions change the PS orientation in the process of executing the maneuver. Regions of existence are established for all types of solutions, and algorithms for determination of parameters of these maneuvers are suggested. The algorithms were used to calculate parameters of the maneuvers of transfer from a launching orbit to a working Sun-synchronous orbit, and to calculate the maneuvers of supporting the parameters of such an orbit in a specified range.  相似文献   
157.
The Dawn spectrometer (VIR) is a hyperspectral spectrometer with imaging capability. The design fully accomplishes Dawn’s scientific and measurement objectives. Determination of the mineral composition of surface materials in their geologic context is a primary Dawn objective. The nature of the solid compounds of the asteroid (silicates, oxides, salts, organics and ices) can be identified by visual and infrared spectroscopy using high spatial resolution imaging to map the heterogeneity of asteroid surfaces and high spectral resolution spectroscopy to determine the composition unambiguously. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of the asteroid global and local properties. VIR combines two data channels in one compact instrument. The visible channel covers 0.25–1.05 μm and the infrared channel covers 1–5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291–1304, 1998; Reininger et al. in Proc. SPIE 2819:66–77, 1996) on board the ESA Rosetta mission. It will be operated for more than 2 years and spend more than 10 years in space.  相似文献   
158.
The Martian ionosphere has for the first time been probed by a low frequency topside radio wave sounder experiment (MARSIS) (Gurnett et al., 2005). The density profiles in the Martian ionosphere have for the first time been observed for solar zenith angles less than 48 degrees. The sounder spectrograms typically have a single trace of echoes, which are controlled by reflections from the ionosphere in the direction of nadir. With the local density at the spacecraft derived from the sounder measurements and using the lamination technique the spectrograms are inverted to electron density profiles. The measurements yield electron density profiles from the sub-solar region to past the terminator. The maximum density varies in time with the solar rotation period, indicating control of the densities by solar ionizing radiation. Electron density increases associated with solar flares were observed. The maximum electron density varies with solar zenith angle as predicted by theory. The altitude profile of electron densities between the maximum density and about 170m altitude is well approximated by a classic Chapman layer. The neutral scale height is close to 10 to 13 km. At altitudes above 180 km the densities deviate from and are larger than inferred by the Chapman layer. At altitudes above the exobase the density decrease was approximated by an exponential function with scale heights between 24 and 65 km. The densities in the top side ionosphere above the exobase tends to be larger than the densities extrapolated from the Chapman layer fitted to the measurements at lower altitudes, implying more efficient upward diffusion above the collision dominated photo equilibrium region.  相似文献   
159.
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号