首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   2篇
  国内免费   2篇
航空   277篇
航天技术   51篇
综合类   1篇
航天   94篇
  2021年   5篇
  2019年   3篇
  2018年   69篇
  2017年   37篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   12篇
  2011年   37篇
  2010年   12篇
  2009年   15篇
  2008年   20篇
  2007年   22篇
  2006年   10篇
  2005年   17篇
  2004年   11篇
  2003年   15篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1967年   9篇
  1966年   11篇
排序方式: 共有423条查询结果,搜索用时 15 毫秒
151.
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.  相似文献   
152.
Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3?h temporal resolution. Additionally, 6?days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15?months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6?days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for ΔUT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.  相似文献   
153.
We investigate electron acceleration due to shear Alfvén waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfvén speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfvén wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.  相似文献   
154.
We consider transfers with low thrust in an arbitrary field of forces. The modified method of transporting trajectory [1–4] is used for optimization of the transfers. The complexity of finding the transporting trajectory of a preset type can be the main obstacle to application of this method. This challenge is solved for the three-body problem in the Hill motion model. Numerical analysis of the method is performed using an example of the transfers to halo-orbits around the solar-terrestrial libration points.  相似文献   
155.
We present data in examination of the utility of electrical impedance spectroscopy measurements for in situ surveys to determine the water content, distribution, and phase in unconsolidated planetary regolith. We conducted calibration experiments under conditions relevant to Mars: the concentration of electrolytes in solution was varied up to 1 M to simulate the effects of unsaturated dissolved minerals and brines. We also varied the water content of heterogeneous water/sand mixtures, made with these electrolytic solutions from 0.01 wt% to 10 wt%. Tests were performed at temperatures from +25 degrees C to -65 degrees C. Conductivity and dielectric permittivity calculated from the impedance measurements indicate an expected dependence on electrolyte concentration and relative independence from electrolyte type for both liquid water and water ice. Conductivity and calculated dielectric relaxation times for these aqueous solutions agree with existing data in the literature. The relative permittivity for heterogeneous water/sand mixtures is dominated by polarization effects for the electrode configuration used. However, the characteristic orientational relaxation of ice is still visible. The conductivity retains the strong dependence on electrolyte concentration, and the permittivity is still not affected by electrolyte type. A "universal" curve between conductivity and water content establishes detectability limits of <0.01 wt% and approximately 0.3 wt% for water/sand mixtures containing liquid water and ice, respectively.  相似文献   
156.
Atmospheric Escape and Evolution of Terrestrial Planets and Satellites   总被引:1,自引:1,他引:0  
The origin and evolution of Venus’, Earth’s, Mars’ and Titan’s atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn’s large satellite Titan efficiently.  相似文献   
157.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
158.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   
159.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号