首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   2篇
  国内免费   2篇
航空   277篇
航天技术   51篇
综合类   1篇
航天   94篇
  2021年   5篇
  2019年   3篇
  2018年   69篇
  2017年   37篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   15篇
  2012年   12篇
  2011年   37篇
  2010年   12篇
  2009年   15篇
  2008年   20篇
  2007年   22篇
  2006年   10篇
  2005年   17篇
  2004年   11篇
  2003年   15篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   8篇
  1984年   7篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   3篇
  1967年   9篇
  1966年   11篇
排序方式: 共有423条查询结果,搜索用时 31 毫秒
121.
Using magnetometer and electron observations from the Mars Global Surveyor (MGS) and the Wind spacecraft we show that the region of magnetic field pile-up and density decrease located between the Martian ionosphere and bow shock exhibit strong similarities with the plasma depletion layer (PDL) observed upstream of the Earth's magnetopause in the absence of magnetic reconnection when the magnetopause is a solid obstacle in the solar wind. A PDL is formed upstream of the terrestrial magnetopause when the magnetic field piles up against the obstacle and particles in the pile-up region are squeezed away from the high magnetic pressure region along the field lines as the flux tubes convect toward the magnetopause. We here discuss the possibility that at least part of the region of magnetic field pile-up and density depletion upstream of Mars may be formed by the same physical processes which generate the PDL upstream of the Earth's magnetopause. More complete ion, electron, and neutral measurements are needed to conclusively determine the relative importance of the plasma depletion process versus exospheric processes.  相似文献   
122.
The Search Coil Magnetometer for THEMIS   总被引:2,自引:0,他引:2  
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally.  相似文献   
123.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
124.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
125.
Infrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Ices in molecular clouds are dominated by the very simple molecules H2O, CH3OH, NH3, CO, CO2, and probably H2CO and H2. More complex species including nitriles, ketones, and esters are also present, but at lower concentrations. The evidence for these, as well as the abundant, carbon-rich, interstellar, polycyclic aromatic hydrocarbons (PAHs) is reviewed. Other possible contributors to the interstellar/pre-cometary ice composition include accretion of gas-phase molecules and in situ photochemical processing. By virtue of their low abundance, accretion of simple gas-phase species is shown to be the least important of the processes considered in determining ice composition. On the other hand, photochemical processing does play an important role in driving dust evolution and the composition of minor species. Ultraviolet photolysis of realistic laboratory analogs readily produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including amides, ketones, and polyoxymethylenes (POMs). Inclusion of PAHs in the ices produces many species similar to those found in meteorites including aromatic alcohols, quinones and ethers. Photon assisted PAH-ice deuterium exchange also occurs. All of these species are readily formed and are therefore likely cometary constituents. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
126.
127.
128.
The physical sense of the main ideas, presently used in plasma physics, is discussed. An attempt is made to clarify the concepts, used in plasma physical calculations. The concept of `Coulomb collisions' with the implicitly introduced rapid stochastization plays the main negative role in the physics of fully ionized plasma. Statistical methods, which are adequate for the neutral gas and for the partially ionized plasma, are not applicable for the completely ionized case. It is the cause of large errors in evaluating real plasma parameters. A new concept is considered: a fully ionized space plasma should be treated as a dynamical system with a low level of chaos. Further progress in space physics requires a serious renewal of plasma theory.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号