首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
航空   37篇
航天技术   2篇
  2011年   2篇
  2007年   6篇
  2006年   13篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1997年   3篇
  1994年   4篇
  1988年   1篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
21.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   
22.
By identifying peaks in the photoelectron spectrum produced by photoionization of CO2 in the Martian atmosphere, we have conducted a pilot study to determine the locations of these photoelectrons in the space around Mars. The significant result of this study is that these photoelectrons populate a region around Mars bounded externally by the magnetic pileup boundary, and internally by the lowest altitude of our measurements (∼250 km) on the dayside and by a cylinder of approximately the planetary radius on the nightside. It is particularly noteworthy that the photoelectrons on the nightside are observed from the terminator plane tailward to a distance of ∼3 R M, the Mars Express apoapsis. The presence of the atmospherically generated photoelectrons on the nightside of Mars may be explained by direct magnetic field line connection between the nightside observation locations and the Martian dayside ionosphere. Thus the characteristic photoelectron peaks may be used as tracers of magnetic field lines for the study of the magnetic field configuration and particle transport in the Martian environment.  相似文献   
23.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   
24.
Mars and Venus do not have a global magnetic field and as a result solar wind interacts directly with their ionospheres and upper atmospheres. Neutral atoms ionized by solar UV, charge exchange and electron impact, are extracted and scavenged by solar wind providing a significant loss of planetary volatiles. There are different channels and routes through which the ionized planetary matter escapes from the planets. Processes of ion energization driven by direct solar wind forcing and their escape are intimately related. Forces responsible for ion energization in different channels are different and, correspondingly, the effectiveness of escape is also different. Classification of the energization processes and escape channels on Mars and Venus and also their variability with solar wind parameters is the main topic of our review. We will distinguish between classical pickup and ??mass-loaded?? pickup processes, energization in boundary layer and plasma sheet, polar winds on unmagnetized planets with magnetized ionospheres and enhanced escape flows from localized auroral regions in the regions filled by strong crustal magnetic fields.  相似文献   
25.
2D reconnection is possible only in connection with the existence of a singularity in the magnetic field line topology, associated with a magnetic null point or a current sheet. Both of these provide an X-type structure of the magnetic field where fields of opposite polarity meet and reconnect. In 3D a similar topology is found in a null point pair, when the null points are connected by a separator line. The separator is defined as the intersection line of the two null-point fan planes. This paper reports on the topological evolution of this configuration with respect to different perturbations emerging from imposed boundary velocities, using a nonlinear numerical approach.  相似文献   
26.
This review is devoted to ponderomotive forces and their importance for the acceleration of charged particles by electromagnetic waves in space plasmas. Ponderomotive forces constitute time-averaged nonlinear forces acting on a media in the presence of oscillating electromagnetic fields. Ponderomotive forces represent a useful analytical tool to describe plasma acceleration. Oscillating electromagnetic fields are also related with dissipative processes, such as heating of particles. Dissipative processes are, however, left outside these discussions. The focus will be entirely on the (conservative) ponderomotive forces acting in space plasmas. The review consists of seven sections. In Section 1, we explain the rational for using the auxiliary ponderomotive forces instead of the fundamental Lorentz force for the study of particle motions in oscillating fields. In Section 2, we present the Abraham, Miller, Lundin–Hultqvist and Barlow ponderomotive forces, and the Bolotovsky–Serov ponderomotive drift. The hydrodynamic, quasi-hydrodynamic, and ‘`test-particle’' approaches are used for the study of ponderomotive wave-particle interaction. The problems of self-consistency and regularization are discussed in Section 3. The model of static balance of forces (Section 4) exemplifies the interplay between thermal, gravitational and ponderomotive forces, but it also introduces a set of useful definitions, dimensionless parameters, etc. We analyze the Alfvén and ion cyclotron waves in static limit with emphasis on the specific distinction between traveling and standing waves. Particular attention has been given to the impact of traveling Alfvén waves on the steady state anabatic wind that blows over the polar regions (Section~5). We demonstrate the existence of a wave-induced cold anabatic wind. We also show that, at a critical point, the ponderomotive acceleration of the wind is a factor of 3 greater than the thermal acceleration. Section 6 demonstrates various manifestations of ponderomotive forces in the Earth's magnetosphere, for instance the ionospheric plasma acceleration and outflow. The polar wind and the auroral density cavities are considered in relation to results from the Freja and Viking satellites. The high-altitude energization and escape of ions is discussed. The ponderomotive anharmonicity of standing Alfvén waves is analyzed from ground based ULF wave measurements. The complexity of the many challenging problems related with plasma processes near the magnetospheric boundaries is discussed in the light of recent Cluster observations. At the end of Section 6, we consider the application of ponderomotive forces to the diversity of phenomena on the Sun, in the interstellar environment, on newborn stars, pulsars and active galaxies. We emphasize the role of forcing of magnetized plasmas in general and ponderomotive forcing in particular, presenting some simple conceivable scenarios for massive outflow and jets from astrophysical objects.  相似文献   
27.
Aurora is caused by the precipitation of energetic particles into a planetary atmosphere, the light intensity being roughly proportional to the precipitating particle energy flux. From auroral research in the terrestrial magnetosphere it is known that bright auroral displays, discrete aurora, result from an enhanced energy deposition caused by downward accelerated electrons. The process is commonly referred to as the auroral acceleration process. Discrete aurora is the visual manifestation of the structuring inherent in a highly magnetized plasma. A strong magnetic field limits the transverse (to the magnetic field) mobility of charged particles, effectively guiding the particle energy flux along magnetic field lines. The typical, slanted arc structure of the Earth’s discrete aurora not only visualizes the inclination of the Earth’s magnetic field, but also illustrates the confinement of the auroral acceleration process. The terrestrial magnetic field guides and confines the acceleration processes such that the preferred acceleration of particles is frequently along the magnetic field lines. Field-aligned plasma acceleration is therefore also the signature of strongly magnetized plasma. This paper discusses plasma acceleration characteristics in the night-side cavity of Mars. The acceleration is typical for strongly magnetized plasmas – field-aligned acceleration of ions and electrons. The observations map to regions at Mars of what appears to be sufficient magnetization to support magnetic field-aligned plasma acceleration – the localized crustal magnetizations at Mars (Acuña et al., 1999). Our findings are based on data from the ASPERA-3 experiment on ESA’s Mars Express, covering 57 orbits traversing the night-side/eclipse of Mars. There are indeed strong similarities between Mars and the Earth regarding the accelerated electron and ion distributions. Specifically acceleration above Mars near local midnight and acceleration above discrete aurora at the Earth – characterized by nearly monoenergetic downgoing electrons in conjunction with nearly monoenergetic upgoing ions. We describe a number of characteristic features in the accelerated plasma: The “inverted V” energy-time distribution, beam vs temperature distribution, altitude distribution, local time distribution and connection with magnetic anomalies. We also compute the electron energy flux and find that the energy flux is sufficient to cause weak to medium strong (up to several tens of kR 557.7 nm emissions) aurora at Mars. Monoenergetic counterstreaming accelerated ions and electrons is the signature of field-aligned electric currents and electric field acceleration. The topic is reasonably well understood in terrestrial magnetospheric physics, although some controversy still remains on details and the cause-effect relationships. We present a potential cause-effect relationship leading to auroral plasma acceleration in the nightside cavity of Mars – the downward acceleration of electrons supposedly manifesting itself as discrete aurora above Mars.  相似文献   
28.
The two-dimensional electron spectrometer onFreja consists of a top-hat-type electrostatic analyzer with the addition of entrance aperture deflection plates. The field of view of the concentric-hemisphere analyzer is modified from a plane to a cone up to 25° from this plane by application of bipolar high voltages to the deflection plates. Fast high-voltage sweeps allow full 10 eV–25 KeV, 500-point distribution function measurements in 32 ms. Constant-energy or limited energy-sweep modes allow time resolutions down to 1 ms.A set of electronics combines the electron data with F4 wave data to allow on-board calculations of cross-correlations between electron fluxes and wave electric fields. Additionally, a fast signal processor is capable of searching the electron pulse sequence from one or several channeltrons for high-frequency modulations in the electron flux.  相似文献   
29.
Adaptive Detection Algorithms for Multiple-Target Situations   总被引:2,自引:0,他引:2  
The performance of a mean-level detector is considered for the case where one or more interfering target returns are present in the set of cells used in estimating the clutter-plus-noise level. A serious degradation of detection probability is demonstrated for all of the single-pulse Swerling target fluctuation models (i. e., cases 0, 2, and 4). Indeed, for fixed mean radar cross sections of the primary and interfering targets, the probability of detecting the primary target is asymptotic to values significantly less than unity as the signal-to-noise ratios of the returns approach infinity. A class of alternative adaptive detection procedures is proposed and analyzed. These procedures, based on ranking and censoring techniques, maintain acceptable performance in the presence of interfering targets, and require only a minor addition in hardware to a conventional mean-level detector.  相似文献   
30.
The F3C Cold Plasma Analyzer (CPA) instrument on theFreja spacecraft is designed to measure the energy per unit charge (E/Q) of ions oe electrons in the range 0<E/Q<200 V and complements the observations made by the F3H Hot Plasma Experiment. The CPA sensor, which is deployed on a boom, is an electrostatic analyzer which produces angle/energy images of particles incident on the sensor in a plane perpendicular to the boom axis. Charged particles incident normal to the CPA sensor housing axis of symmetry, which coincides with the boom axis, pass through collimators and enter a semi-spherical electrostatic analyzer which disperses particles in energy and azimuthal angle of arrival onto an imaging MCP detector thus producing images of the particle distributions in a plane perpendicular to the boom axis. Measurements are transmitted either as discrete 16×16 (angle/energy) images or as parameters related to the incident particle distribution function. Pixels in the discrete images are separated approximately equally in azimuthal angle while the 16 energy bins are separated approximately geometrically in energy. The ratio of the maximum to minimum energy imaged is programmable up to a maximum of more than a factor of ten, and the energy range itself is also under the control of the processor and can be varied by more than an order of magnitude. The density dynamic range of the sensor is increased by the introduction of an electrostatic gating system between the entrance aperture and the analyzer which can be used to duty-cycle low-energy electrons into the sensor thus keeping the count rate within appropriate levels. To reduce the effects of spacecraft induced perturbations on the lower-energy particle distributions, the sensor portion of the instrument is deployed on a 2 m long boom, perpendicular to the spacecraft spin axis. Spacecraft rotation is used to recover complete (4) angle/energy distributions every half spin period. In addition, the sensor skin may be biased with respect to the spacecraft ground to offset effects due to spacecraft charging. Current to the skin is monitored, making the exterior of the sensor equivalent to a large cylindrical Langmuir probe. Two separate processing paths for signals from the MCP anode may be chosen; slow and rast. The slow pulse processing path provides discrete angle/energy images at a nominal rate of 10 images per second and a peak burst mode rate of 100 images per second. The fast analog or current mode path provides crude parameterized estimates of densities, temperatures and drift velocities at nominal rates of up to 1000 parameters per second with a burst rate near 6000 parameters per second. Observations of cold ions and electrons in an unperturbed ionospheric plasma are presented which demonstrate the functionality of the instrument. Suprathermal ion observations in a transverse ion energization or acceleration region are also shown which demonstrate many of the small-scale features of these events.The Canadian Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号