首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   884篇
  免费   271篇
  国内免费   141篇
航空   738篇
航天技术   165篇
综合类   62篇
航天   331篇
  2024年   7篇
  2023年   31篇
  2022年   66篇
  2021年   66篇
  2020年   83篇
  2019年   56篇
  2018年   77篇
  2017年   60篇
  2016年   61篇
  2015年   52篇
  2014年   61篇
  2013年   59篇
  2012年   57篇
  2011年   75篇
  2010年   73篇
  2009年   55篇
  2008年   66篇
  2007年   59篇
  2006年   59篇
  2005年   33篇
  2004年   30篇
  2003年   25篇
  2002年   34篇
  2001年   22篇
  2000年   18篇
  1999年   10篇
  1998年   1篇
排序方式: 共有1296条查询结果,搜索用时 0 毫秒
111.
航空发动机燃烧室涉及旋流、雾化蒸发、掺混、化学反应、湍流与火焰相互作用等多尺度强耦合物理化学过程,相关的高 精度建模和数值模拟面临极大的挑战。超大涡模拟是近些年发展的兼顾计算精度、计算效率和强鲁棒性的数值模拟新方法,具备 试验室尺度和复杂工程应用场景下湍流流动与燃烧仿真能力。针对航空发动机燃烧室相关流动与燃烧基本特征,阐述了超大涡 模拟的理论方法及特点,从旋流流动、湍流燃烧、液雾雾化、碳烟生成、燃烧不稳定等典型多物理过程,以及双旋流模型燃烧室和高 温升燃烧室气动性能集成仿真等方面介绍了超大涡模拟的研究进展,对涉及的物理机制进行了分析,为超大涡模拟在航空发动机 燃烧室中规模化工程应用提供了坚实支撑。超大涡模拟在较低的计算资源消耗下具备与传统大涡模拟相当的计算精度,是一种 经济可承受的燃烧室高精度气动性能仿真新方法。  相似文献   
112.
为满足低损耗的设计需求,太赫兹微波组件中一般使用熔融石英基板。不同于光学系统对熔融石英材料的要求,应用于太赫兹等高频段微波组件的熔融石英基板材料不仅需要具备稳定的介电性能,还需要更优异的表面镀膜特性与电路图形、外形等加工精度要求。本文基于薄膜电路制造工艺要求,针对JC-Z05石英基板膜层附着力、表面刻蚀精度、切割质量、粘接强度等关键工艺特性研究,并通过改进工艺参数,进一步优化JC-Z05石英基板工艺适用性,提升国产石英基板材料作为在太赫兹频段薄膜电路制备的可靠性。研究结果表明,国产化熔融石英基板,结合优化后的薄膜电路制作工艺,制作出的电路具有膜层附着力强、外形切割公差小以及粘接可靠性高的特点,可满足复杂宇航环境中的高可靠应用。这一工作可为后续熔融石英电路基板在太赫兹领域的应用提供参考。  相似文献   
113.
针对冲压发动机中高温板壳结构的振动抑制需求,提出新型颗粒金属橡胶夹层阻尼结构,基于模态应变能法建立了其动力学理论模型和数值求解方法。与试验结果对比表明,共振幅值的相对误差不大于20%。进一步采用理论分析与试验相结合的手段,论述了颗粒型金属橡胶夹层阻尼的有效性,可有效降低振动响应3~8倍;随着填充密度的增加,减振效果增加;对于一弯和二弯振动,下部填充减振效果最好,而在下部填充,振动响应会被放大;依据数值计算获得的应变能分布结果,进行夹层设计可达到良好的减振效果。  相似文献   
114.
基于移动最小二乘无网格方法,耦合RNG(Re-Normalisation Group)k-ε湍流模型求解雷诺平均Navier-Stokes方程。采用AUSM(Advection Upstream Splitting Method)+-up迎风格式求解数值通量,应用在高度各向异性点云结构中取得良好结果的点云重构技术结合移动最小二乘法拟合空间导数,并用三阶SSP(Strong Stability Preserving)型Runge-Kutta显式时间推进格式求解离散后的控制方程。在此基础之上,实现了对NACA0012、RAE2822翼型亚、跨声速黏性绕流的数值模拟,给出了翼型表面压力系数分布曲线、不同位置处的平均速度剖面、马赫数等值线等计算结果,并与实验值及相关文献数值模拟结果进行比较,结果吻合较好。表明所发展的结合点云重构技术的无网格方法耦合RNGk-ε湍流模型能够成功模拟翼型亚、跨声速黏性绕流,验证了所提算法的有效性,并拓展了无网格方法求解湍流流动的途径。  相似文献   
115.
刘春梅  刘郁丽  任家海  杨合 《航空学报》2015,36(4):1320-1329
 双脊矩形管的绕弯成形受内外侧模具的共同约束,不同模具约束下管坯的受力不同,使得其截面变形情况也不相同,而截面变形严重地影响弯管件的成形质量和使用性能。因此,基于ABAQUS有限元平台建立了双脊矩形管E弯成形三维有限元模型,并通过实验验证了模型的可靠性。采用所建模型,研究了内外侧模具约束条件对双脊矩形管E弯截面变形的影响规律,发现当只有内腹板脊槽受约束时,内腹板脊槽的内缩变形可得到较好的控制,而其他部位的变形则有增大的趋势;当只有外腹板脊槽受约束时,内腹板脊槽宽度变形基本不发生变化,而其他部位的变形则有减小的趋势;当内外腹板脊槽均受约束时,可较好地控制双脊矩形管E弯过程中的截面变形。芯头个数对整管截面高度、宽度、外腹板脊槽宽度与两脊槽底部的间距的变形影响较大,但对内腹板脊槽宽度的变形影响不显著。  相似文献   
116.
冲击距与气膜孔方位角对旋流气膜冷却性能影响   总被引:1,自引:1,他引:1       下载免费PDF全文
刘友宏  任浩亮 《推进技术》2016,37(7):1271-1279
为了获得冲击距Hi与气膜孔方位角α对旋流气膜冷却性能的影响规律,以六边形供气腔圆形气膜孔平板气膜冷却结构为研究对象,对五种冲击距参数(0.74D,1.14D,1.54D,1.94D,2.34D)(D为气膜孔直径)和五种气膜孔方位角参数(0°,10°,15°,20°,25°)进行了三维数值计算研究,得到了绝热壁面气膜冷却效率、展向平均气膜冷却效率、流场空间无量纲浓度分布等随冲击距与气膜孔方位角的变化规律,分析了肾形涡对旋流气膜冷却性能的影响机理。结果表明:冲击距对绝热壁面气膜冷却效率展向分布规律影响不大,而方位角增加能够明显提高绝热壁面气膜冷却效率及展向气膜覆盖面积,方位角0°模型展向气膜冷却效率最大值为0.42,方位角25°模型的最大值为0.48,相比前者增加14.3%;绝热壁面同一流向位置的展向平均气膜冷却效率随冲击距的增加而增大,随方位角的增加而增大,Hi=2.34D时的展向平均气膜冷却效率最佳,α=20°时的展向平均气膜冷却效率曲线最佳。方位角的增加能够明显破坏流场中存在的肾形涡结构。  相似文献   
117.
易科  陈建  梁子璇  任章  李清东 《航空学报》2016,37(12):3752-3763
半捷联位标器安装在弹体上,由于寄生回路的存在,使得位标器稳定跟踪控制回路和弹体姿态控制回路产生严重耦合,影响了位标器的稳定与跟踪。针对半捷联导引头稳定平台的稳定与跟踪问题,提出了一种半捷联位标器稳定跟踪控制与弹体姿态控制的一体化方法。基于反步控制原理设计了控制律,通过合理选择反馈增益可保证系统的稳定性与动态性能。最后对一体化设计与传统分离设计进行了仿真对比。仿真结果表明:考虑位标器稳定跟踪回路与导弹姿态回路耦合的一体化控制器,不仅能够保证弹体姿态控制系统快速响应,还可以提高位标器的稳定跟踪性能,并降低位标器跟踪不上高速目标的可能性。  相似文献   
118.
针对高超声速拦截弹姿态控制问题,提出了基于非线性扩张状态观测器(NESO)的解耦控制方法.根据Tornambe的分散鲁棒控制理论,把耦合项和不确定性视为广义不确定项,构造基于NESO的估计和补偿信号并加入到闭环控制律中.理论推导证明了该方法可以保证闭环系统跟踪误差一致有界.在高超声速拦截弹模型上进行了仿真验证,并与传统的分通道反馈控制方法进行对比,结果表明所设计解耦控制方法得到了更好的控制效果,在较大程度上消除了通道耦合和不确定性的影响.  相似文献   
119.
为对航空发动机蜂窝式轴心通风器油气分离效率进行研究,建立考虑油气双向耦合的流场计算方法及油滴/壁面相互作用模型,在验证通风阻力及油气分离效率可靠性的基础上,对不同转速、通风流量和环境温度下蜂窝式轴心通风器的油气分离效果进行计算和分析.结果表明:转速的增加会使油气分离效率得到提升,而通风流量和环境温度的增加则导致油气分离效率的降低.蜂窝孔结构的加入对通风阻力影响不大,却对通风器的滑油分离过程起主要作用,计算表明其对滑油分离贡献率在80%以上.   相似文献   
120.
为探索超声速气流中变角度组合射流对喷注雾化过程的影响,采用高速摄影和基于KH-RT破碎模型的欧拉-拉格朗日数值仿真方法开展研究,仿真结果和实验吻合较好。研究表明,同一流量下逆流喷注,可以较为有效地增强混合效果,提升射流穿透深度。带扩张型面内液雾穿透深度呈现先增大后降低的趋势。等流量条件下顺流双孔喷注有效截面面积大体一致,略低于单孔直喷。等效流量下逆流喷注所得液雾截面面积收益最为明显。截面平均粒径方面,单孔喷注雾化粒径基本一致,顺流双孔喷雾粒径较小。等压降顺流对喷由于流量较大,雾化质量相对较差,平均粒径最大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号