首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18649篇
  免费   36篇
  国内免费   123篇
航空   9934篇
航天技术   5688篇
综合类   251篇
航天   2935篇
  2021年   158篇
  2018年   221篇
  2016年   155篇
  2014年   440篇
  2013年   523篇
  2012年   427篇
  2011年   591篇
  2010年   409篇
  2009年   757篇
  2008年   803篇
  2007年   380篇
  2006年   430篇
  2005年   407篇
  2004年   453篇
  2003年   550篇
  2002年   497篇
  2001年   590篇
  2000年   379篇
  1999年   461篇
  1998年   455篇
  1997年   340篇
  1996年   417篇
  1995年   501篇
  1994年   493篇
  1993年   361篇
  1992年   363篇
  1991年   253篇
  1990年   243篇
  1989年   434篇
  1988年   212篇
  1987年   243篇
  1986年   248篇
  1985年   652篇
  1984年   531篇
  1983年   419篇
  1982年   492篇
  1981年   619篇
  1980年   250篇
  1979年   190篇
  1978年   189篇
  1977年   146篇
  1976年   155篇
  1975年   197篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The reflection of oblique shock waves has been the subject of numerous experimental, analytical and numerical studies in the past five decades. In the past six years three reviews have been published on various aspects of shock wave phenomena by Griffith (1981), Bazhenova et al. (1984) and Hornung (1985). However, these reviews were not devoted completely to shock wave reflection phenomena and as such they are more limited in scope than the present review. Furthermore, the developments since these reviews were written suggested a need for an up-to-date comprehensive review. The present review is aimed at describing in detail the entire shock wave reflection phenomenon from a phenomenological point of view. It is divided into three parts. The first is dedicated to the reflection in pseudo-steady flows, e.g., shock tube experiments over straight wedges, the second concentrates on steady flows, e.g., wind tunnel experiments, and the third describes the phenomenon in truly unsteady flows, e.g., shock tube experiment over non-straight wedges, spherical blast wave reflections, etc. In each of these flow patterns, unsolved problems are discussed and future research needs are identified. In order to keep this review within an acceptable size it was decided not to include details of numerical studies. Whenever possible the nomenclature is the one suggested by Ben-Dor and Dewey (1985).  相似文献   
992.
The results of numerical solution of the wave equations for the oblique incidence of whistling electromagnetic waves upon the night ionosphere from above have been obtained and analyzed. In the studied region of altitudes, within the wavelength scale, charged particle concentration varies drastically, and damping caused by collisions between the charged and neutral particles decreases considerably. Below, the sharp lower boundary of the ionosphere, the refractive index of the whistler wave approaches unity, and plasma turbulence transform into atmospheric electromagnetic waves. The dependences of the whistler reflection factor are found in terms of energy and horizontal magnetic component of the electromagnetic wave near the Earth’s surface on the frequency and the wave vector transverse component for the plain-layered medium model at two values of latitude. Strong dependences have been found on the wave angle of incidence and frequency. At rather small angles of incidence, the wave disturbances reach the Earth’s surface, and the module of reflection coefficient logarithm is in the range of 0.4–1. At large angles of incidence, the reflection coefficient module varies over a wide range depending on specific conditions. The obtained results explain the absence of oscillation modes of plasma magnetosphere maser in the night magnetosphere.  相似文献   
993.
994.
The problem of control of the on-board microgravity environment in order to extend the service life of the long-term space station has been discussed. Software developed for the ISS and the results of identifying dynamic models and external impacts based on telemetry data have been presented. Proposals for controlling the onboard microgravity environment for future long-term space stations have been formulated.  相似文献   
995.
996.
The results of numerical calculation of the dependences of the electron density, the eigenfrequency and the dielectric plasma permeability on the geometric parameters and the altitude of body motion in the near and far wake behind a thin conical body with a spherical nose blunting have been presented. The electron density maximum has been shown to be located in the region of the neck of the near wake behind the body, which determines the type of this region (supercritical or subcritical). This in turn affects the propagation of radio waves through this plasma region. A comparative analysis was performed for two different bodies with the same ballistic coefficient values. No characteristic distinctions were revealed in the values of electron density or the plasma eigenfrequency in the near and far wake behind these bodies. However, it has been shown that there are differences in the values of the distance from the bottom cross section to the neck of the near wake behind these bodies.  相似文献   
997.
998.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
999.
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.  相似文献   
1000.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号