首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4864篇
  免费   6篇
  国内免费   12篇
航空   2540篇
航天技术   1564篇
综合类   181篇
航天   597篇
  2021年   31篇
  2018年   69篇
  2017年   37篇
  2016年   41篇
  2014年   72篇
  2013年   99篇
  2012年   106篇
  2011年   162篇
  2010年   103篇
  2009年   185篇
  2008年   196篇
  2007年   115篇
  2006年   88篇
  2005年   87篇
  2004年   118篇
  2003年   140篇
  2002年   179篇
  2001年   199篇
  2000年   94篇
  1999年   124篇
  1998年   153篇
  1997年   99篇
  1996年   138篇
  1995年   168篇
  1994年   147篇
  1993年   95篇
  1992年   122篇
  1991年   57篇
  1990年   64篇
  1989年   125篇
  1988年   59篇
  1987年   60篇
  1986年   52篇
  1985年   153篇
  1984年   120篇
  1983年   111篇
  1982年   117篇
  1981年   154篇
  1980年   56篇
  1979年   48篇
  1978年   58篇
  1977年   38篇
  1976年   42篇
  1975年   50篇
  1974年   39篇
  1973年   25篇
  1972年   50篇
  1971年   47篇
  1970年   30篇
  1969年   34篇
排序方式: 共有4882条查询结果,搜索用时 15 毫秒
281.
An urgent problem of organizing the on-line monitoring of large territories using the information unmanned aerial systems (UAS) is considered. We determine the UAS placement and their necessary number by solving a two-criteria problem on rational covering of the territory by these systems. A man-machine algorithm and an example of the problem solution are presented.  相似文献   
282.
Generalized likelihood ratio tests (GLRTs) are derived for the problem of detecting targets in hyperspectral images. These detectors are derived under the assumptions that the signals from the materials in the image mix linearly and that the noise in the system is Gaussian. It is also assumed that the abundances of the signals from the various materials in a pixel must sum to one. This constraint models the fact that the material abundances in a pixel are just the fraction of the pixel that they occupy. Under these assumptions, detectors are derived which outperform the detectors derived without the sum-to-one constraint.  相似文献   
283.
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by Principal Investigators, which are responsible for their operations. As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines.  相似文献   
284.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   
285.
The simple tilted dipole picture of Corotating Interaction Regions which prevailed during the first polar pass of Ulysses no longer applies since the Sun entered a more active phase. Recent observations show that CIRs still persist, though the large polar coronal holes of solar minimum shrink to smaller areas and move to lower latitudes. We present 3-D simulations for the cosmic-ray intensity variations in a model with non-polar high speed streams. Latitudinal and recurrent time-variations are discussed, but more detailed and realistic simulations are required before quantitative comparisons with observations can be made. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
286.
Messenger  S.  Stadermann  F.J.  Floss  C.  Nittler  L.R.  Mukhopadhyay  S. 《Space Science Reviews》2003,106(1-4):155-172
Interplanetary dust particles collected in the stratosphere frequently exhibit enrichments in deuterium (D) and 15N relative to terrestrial materials. These effects are most likely due to the preservation of presolar interstellar materials. While the elevated D/H ratios probably resulted from mass fractionation during chemical reactions at very low < 100 K temperatures, the origin of the N isotopic anomalies remains unresolved. The bulk of the N-bearing material may have obtained its isotopic signatures from low temperature chemistry, but a nucleosynthetic origin is also possible. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
287.
Haines  K.  Hipkin  R.  Beggan  C.  Bingley  R.  Hernandez  F.  Holt  J.  Baker  T.  Bingham  R.J. 《Space Science Reviews》2003,108(1-2):205-216
Accurate local geoids derived from in situ gravity data will be valuable in the validation of GOCE results. In addition it will be a challenge to use GOCE data in an optimal way, in combination with in situ gravity, to produce better local geoid solutions. This paper discusses the derivation of a new geoid over the NW European shelf, and its comparison with both tide gauge and altimetric sea level data, and with data from ocean models. It is hoped that over the next few years local geoid methods such as these can be extended to cover larger areas and to incorporate both in situ and satellite measured gravity data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
288.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
289.
We show, using the HST — GHRS data on velocity and temperature in the nearby interstellar medium, that the observed 3 – 4 km s–1 relative velocity between the Local Interstellar Cloud (LIC) and the so-called G-cloud located in the Galactic Center hemisphere can be quite naturally explained assuming that the two clouds do interact with each other. In the proposed interpretation the two media are separated by a (quasiperpendicular) MHD shock front propagating from the LIC into the G-cloud. The LIC plasma is then nothing else but the shocked (compression 1.3 – 1.4) gas of the G-cloud. A 1-D single-fluid solution of the Rankine — Hugoniot equations can fit the most probable observed values of the relative velocity (3.75 km/s), LIC (6700 K) and G-cloud (5400 K) kinetic temperatures, if the plasma-beta of the LIC plasma is in the range 1.3 – 1.5 (Table 1). This corresponds to a super — fast magnetosonic motion of the heliosphere through the LIC, independently of LIC density. The LIC magnetic field strength is 1.9 (3.1) G for the LIC electron density ne = 0.04 (0.10) cm–3. In this case the shock is less than 30 000 AU away and moves at about 10 km s–1 relative to the LIC plasma. The Sun is chasing the shock and should catch up with it in about 104 years. If the heliospheric VLP emissions cutoff at 1.8 kHz is indicative of ne (LIC) = 0.04 cm–3 (Gurnett et al., 1993), the (pure plasma) bowshock ahead of the heliopause could be the source of quasi-continuous heliospheric 2-kHz emission band. We believe that with the expected increase in the performance of modern spectroscopic instrumentation the proposed method of magnetic field evaluation may in the future find wider application in the studies of the interstellar medium.  相似文献   
290.
The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号