It is well known that temperature- and watervapour-profiles, ozone concentration, other atmospheric constituents and the surface-radiation of the Earth can be determined by remote sensing in the IR radiation range with the aid of a satellite.
The narrow-band radiation measurements for remote sensing of the atmosphere and the Earth-surface can be realized either by various radiometers working in selected frequency channels or, continuously in a given frequency range, by spectrometers with fixed spectral resolution.
Fourier-spectrometers (FS) have been used in Earth-orbit only four times up to now: Nimbus 3, Nimbus 4, Meteor 25 and Meteor 28.
The most important technical parameters, the working regime and some aspects of date processing of the FSs working aboard of Meteor 25 and Meteor 28 are given. For the determination of calibrated absolute spectra a method is used that is based on the experience of the first experiment and on the long time stability of the spectrometers. The results obtained in laboratory calibration tests and in the orbit are described. 相似文献
In the 18.5-day flight of the Soviet biosatellite Cosmos-936 (3-22, August 1977) com-parative investigations of the physiological effects of prolonged weightlessness (20 rats) and artificial gravity of 1 g (10 rats) were carried out. Throughout the flight artificial gravity was generated by means of animal rotation in two centrifuges with a radius of 320mm. Postflight examination of animals and treatment of the flight data were performed by Soviet scientists in collaboration with the specialists from Bulgaria, Czechoslovakia, the German Democratic Republic, Hungary, Poland, Rumania, France and the U.S.A. During the flight the total motor activity of the weightless rats was higher and their body temperature was lower than those of the centrifuged animals. Postflight examination of the weightless rats showed a greater percentage of errors during maze an increase in water intake and a decrease in diuresis; a fall of the resistance of peripheral red cells; an increase in the conditionally pathogenic microflora in the mouth; a decrease of oxygen consumption, carbon dioxide production and energy expenditures; a drop in the static physical endurance; a decline in the capacity to keep balance on the rail; an increase in the latent period of the lifting reflex, etc. The centrifugal animals displayed lesser or no change of the above type. These findings together with the biochemical and morphological data give evidence that during and after flight adaptive processes in the centrifuged rats developed better. 相似文献
Utilization of solar radiation pressure to stabilize the pitch attitude of an unsymmetrical satellite along an inertially-fixed orientation is investigated. A controller employing two rotatable highly reflective control surfaces is proposed and a control strategy involving both nominal and feedback controls is synthesized. Accounting for the apparent annual motion of the Sun, the validity of the concept throughout the year is established through a stability analysis of the system. The influence of the Earth's shadow on the controller performance is also analyzed. The speed of response as well as the pointing accuracy capabilities of the system appear to be quite acceptable for long-life scientific missions. 相似文献
The experiment with two-frequency radio occultation measurements of the Venusian nightside ionosphere using the Venera-9 and 10 orbiters is described. The experiment is the first of a kind in which the radio link to one of the spacecraft is used to probe the ionosphere, while the other is measuring the variations in the integral electron number density along the path of radio ray propagation. The experiment has been designed to achieve the maximum possible accuracies in determining the parameters of the probed ionosphere using the bistatic two-frequency radio occultation method. 相似文献
Attitude control techniques for the pointing and stabilization of very large, inherently flexible spacecraft systems are investigated. The attitude dynamics and control of a long, homogeneous flexible beam whose center of mass is assumed to follow a circular orbit is analyzed. In this study, first order effects of gravity-gradient are included, whereas external perturbations and related orbital station keeping maneuvers are neglected. A mathematical model which describes the system deflections within the orbital plane has been developed by treating the beam as having a maximum of three discretized mass particles connected by massless, elastic structural elements. The uncontrolled dynamics of this system are simulated and, in addition, the effects of the control devices are considered. The concept of distributed modal control, which provides a means for controlling a system mode independently of all other modes, is examined. The effect of varying the number of modes in the model as well as the number and location of the control devices are also considered. 相似文献
A special measurement technique allows to determine the stationary and dynamic temperature profiles, acting on a material sample during a Bridgman crystal growth process. It turns out that the thermal field of the furnaces at the place of the sample is modified by a number of device-related factors and by regular correlations. The investigations refer to the execution of experiments in the field of materials sciences in space in furnaces on board Salyut-stations. 相似文献
The phenomenon of light flashes (LF) in eyes for people in space has been investigated onboard Mir. Data on particles hitting the eye have been collected with the SilEye detectors, and correlated with human observations. It is found that a nucleus in the radiation environment of Mir has roughly a 1% probability to cause an LF, whereas the proton probability is almost three orders of magnitude less. As a function of LET, the LF probability increases above 10 keV/micrometer, reaching about 5% at around 50 keV/micrometer. 相似文献
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°. 相似文献