全文获取类型
收费全文 | 4813篇 |
免费 | 3篇 |
国内免费 | 12篇 |
专业分类
航空 | 2517篇 |
航天技术 | 1550篇 |
综合类 | 181篇 |
航天 | 580篇 |
出版年
2021年 | 30篇 |
2018年 | 69篇 |
2017年 | 36篇 |
2016年 | 40篇 |
2014年 | 72篇 |
2013年 | 99篇 |
2012年 | 106篇 |
2011年 | 158篇 |
2010年 | 101篇 |
2009年 | 182篇 |
2008年 | 191篇 |
2007年 | 114篇 |
2006年 | 87篇 |
2005年 | 84篇 |
2004年 | 114篇 |
2003年 | 139篇 |
2002年 | 179篇 |
2001年 | 198篇 |
2000年 | 93篇 |
1999年 | 123篇 |
1998年 | 153篇 |
1997年 | 99篇 |
1996年 | 138篇 |
1995年 | 168篇 |
1994年 | 146篇 |
1993年 | 95篇 |
1992年 | 122篇 |
1991年 | 57篇 |
1990年 | 63篇 |
1989年 | 125篇 |
1988年 | 58篇 |
1987年 | 60篇 |
1986年 | 51篇 |
1985年 | 152篇 |
1984年 | 120篇 |
1983年 | 108篇 |
1982年 | 117篇 |
1981年 | 153篇 |
1980年 | 56篇 |
1979年 | 46篇 |
1978年 | 57篇 |
1977年 | 37篇 |
1976年 | 40篇 |
1975年 | 48篇 |
1974年 | 39篇 |
1973年 | 25篇 |
1972年 | 49篇 |
1971年 | 47篇 |
1970年 | 30篇 |
1969年 | 33篇 |
排序方式: 共有4828条查询结果,搜索用时 46 毫秒
161.
O. Koudelka G. Egger B. Josseck N. Deschamp C. Cordell Grant D. Foisy R. Zee W. Weiss R. Kuschnig A. Scholtz W. Keim 《Acta Astronautica》2009,64(11-12):1144-1149
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges. 相似文献
162.
R.M.T. Hoofs D. Titov H. Svedhem D. Koschny O. Witasse I. Tanco 《Acta Astronautica》2009,65(7-8):987-1000
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations. 相似文献
163.
R.M. Baevsky I.I. Funtova A. Diedrich A.G. Chernikova J. Drescher V.M. Baranov J. Tank 《Acta Astronautica》2009,65(7-8):930-932
Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the “ISS” have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device “Pneumocard” was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex “Pneumocard” was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates.HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight.Our results demonstrate that autonomic function testing aboard the ISS using “Pneumocard” is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut.Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling. 相似文献
164.
Albi E Ambesi-Impiombato FS Peverini M Damaskopoulou E Fontanini E Lazzarini R Curcio F Perrella G 《Astrobiology》2011,11(1):57-64
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions. 相似文献
165.
Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission 总被引:1,自引:0,他引:1
Parnell J Cullen D Sims MR Bowden S Cockell CS Court R Ehrenfreund P Gaubert F Grant W Parro V Rohmer M Sephton M Stan-Lotter H Steele A Toporski J Vago J 《Astrobiology》2007,7(4):578-604
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn. 相似文献
166.
Journal of Reducing Space Mission Cost - 相似文献
167.
The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options. 相似文献
168.
Heilbronn L Frankel K Holabird K Zeitlin C McMahan MA Rathbun W Cronqvist M Gong W Madey R Htun M Elaasar M Anderson BD Baldwin AR Jiang J Keane D Scott A Shao Y Watson JW Zhang WM Galonsky A Ronningen R Zecher P Kruse J Wang J Cary R 《Acta Astronautica》1998,42(1-8):363-373
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations. 相似文献
169.
Cognitive performance aboard the life and microgravity spacelab 总被引:2,自引:0,他引:2
The impact of microgravity and other stressors on cognitive performance need to be quantified before long duration space flights are planned or attempted since countermeasures may be required. Four astronauts completed 38 sessions of a 20-minute battery of six cognitive performance tests on a laptop computer. Twenty-four sessions were preflight, 9 sessions were in-orbit, and 5 sessions were postflight. Mathematical models of learning were fit to each subject's preflight data for each of 14 dependent variables. Assuming continued improvement, expected values were generated from the models for in-orbit comparison. Using single subject designs, two subjects showed statistically significant in-orbit effects. One subject was degraded in two tests, the other was degraded in one test and exceeded performance expectations in another. Other subjects showed no statistically significant effects on the tests. The factors causing the deterioration in the two subjects can not be determined without appropriate ground-based control groups. 相似文献
170.
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed. 相似文献