全文获取类型
收费全文 | 4819篇 |
免费 | 3篇 |
国内免费 | 12篇 |
专业分类
航空 | 2521篇 |
航天技术 | 1552篇 |
综合类 | 181篇 |
航天 | 580篇 |
出版年
2021年 | 30篇 |
2018年 | 69篇 |
2017年 | 37篇 |
2016年 | 40篇 |
2014年 | 72篇 |
2013年 | 99篇 |
2012年 | 108篇 |
2011年 | 158篇 |
2010年 | 101篇 |
2009年 | 182篇 |
2008年 | 191篇 |
2007年 | 114篇 |
2006年 | 87篇 |
2005年 | 85篇 |
2004年 | 114篇 |
2003年 | 139篇 |
2002年 | 179篇 |
2001年 | 198篇 |
2000年 | 93篇 |
1999年 | 123篇 |
1998年 | 153篇 |
1997年 | 99篇 |
1996年 | 138篇 |
1995年 | 168篇 |
1994年 | 148篇 |
1993年 | 95篇 |
1992年 | 122篇 |
1991年 | 57篇 |
1990年 | 63篇 |
1989年 | 125篇 |
1988年 | 58篇 |
1987年 | 60篇 |
1986年 | 51篇 |
1985年 | 152篇 |
1984年 | 120篇 |
1983年 | 108篇 |
1982年 | 117篇 |
1981年 | 153篇 |
1980年 | 56篇 |
1979年 | 46篇 |
1978年 | 57篇 |
1977年 | 37篇 |
1976年 | 40篇 |
1975年 | 48篇 |
1974年 | 39篇 |
1973年 | 25篇 |
1972年 | 49篇 |
1971年 | 47篇 |
1970年 | 30篇 |
1969年 | 33篇 |
排序方式: 共有4834条查询结果,搜索用时 15 毫秒
101.
Rolf Bütikofer Erwin O. FlückigerLaurent Desorgher Michael R. MoserBenoît Pirard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth. 相似文献
102.
H. Mészárosová H.S. Sawant J.R. Cecatto J. Rybák M. Karlický F.C.R. Fernandes M.C. de Andrade K. Jiřička 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed. 相似文献
103.
O. Le Contel S. Perraut A. Roux R. Pellat A. Korth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2395-2406
Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T T) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (E<50keV). Both currents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropics are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop ( few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to “High Frequency” (HF) waves. These “HF” waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so large that they can produce a strong pitch-angle diffusion of energetic ions and a spatial diffusion that leads to a reduction of the diamagnetic current. The signature of a fast ion diffusion is indeed regularly observed during the early breakup; it coincides with the sudden development of large amplitude transient fluctuations, ballooning modes, observed at much lower frequencies (fH+). These results suggest that the HF waves, generated by field-aligned electron beams, provide the dissipation which is necessary to destabilize low frequency (ballooning) modes. 相似文献
104.
K R Sridhar J E Finn M H Kliss 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(2):249-255
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant. 相似文献
105.
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized. 相似文献
106.
A correlative analysis has been made between cosmic ray intensity and solar activity (sunspot numbers) during high amplitude days for the period 1991–1995. The high amplitude days with the time of maximum in the corotational/azimuthal direction do not indicate any significant correlation with solar activity. The diurnal amplitude significantly remains constant and high (0.5%) during the entire period. Our observations suggest that the direction of the anisotropy of high amplitude anisotropic wave train events contribute significantly to the short-term behavior of the cosmic ray diurnal anisotropy. The correlation coefficient is found to remain positive during solar activity maximum for all the high amplitude anisotropic wave train events. 相似文献
107.
A mission template for exploration and damage mitigation of potential hazard of Near Earth Asteroids
D. C. Hyland H. A. Altwaijry R. Margulieux J. Doyle J. Sandberg B. Young N. Satak J. Lopez S. Ge X. Bai 《Cosmic Research》2010,48(5):437-442
The Apophis Exploratory and Mitigation Platform (AEMP) concept was developed as a prototype mission to explore and potentially deflect the Near Earth Asteroid (NEA) 99942 Apophis. Deflection of the asteroid from the potential 2036 impact will be achieved using a gravity tractor technique, while a permanent deflection, eliminating future threats, will be imparted using a novel albedo manipulation technique. This mission will serve as an archetypal template for future missions to small NEAs and could be adapted to mitigate the threat of collision with other potential Earth-crossing objects. 相似文献
108.
Michalski JR Jean-PierreBibring Poulet F Loizeau D Mangold N Dobrea EN Bishop JL Wray JJ McKeown NK Parente M Hauber E Altieri F Carrozzo FG Niles PB 《Astrobiology》2010,10(7):687-703
The primary objective of NASA's Mars Science Laboratory (MSL) mission, which will launch in 2011, is to characterize the habitability of a site on Mars through detailed analyses of the composition and geological context of surface materials. Within the framework of established mission goals, we have evaluated the value of a possible landing site in the Mawrth Vallis region of Mars that is targeted directly on some of the most geologically and astrobiologically enticing materials in the Solar System. The area around Mawrth Vallis contains a vast (>1?×?10? km2) deposit of phyllosilicate-rich, ancient, layered rocks. A thick (>150?m) stratigraphic section that exhibits spectral evidence for nontronite, montmorillonite, amorphous silica, kaolinite, saponite, other smectite clay minerals, ferrous mica, and sulfate minerals indicates a rich geological history that may have included multiple aqueous environments. Because phyllosilicates are strong indicators of ancient aqueous activity, and the preservation potential of biosignatures within sedimentary clay deposits is high, martian phyllosilicate deposits are desirable astrobiological targets. The proposed MSL landing site at Mawrth Vallis is located directly on the largest and most phyllosilicate-rich deposit on Mars and is therefore an excellent place to explore for evidence of life or habitability. 相似文献
109.
Haas JR 《Astrobiology》2010,10(9):953-963
The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater. 相似文献
110.