首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9867篇
  免费   18篇
  国内免费   28篇
航空   4687篇
航天技术   3242篇
综合类   200篇
航天   1784篇
  2021年   92篇
  2019年   57篇
  2018年   190篇
  2017年   119篇
  2016年   129篇
  2015年   57篇
  2014年   204篇
  2013年   261篇
  2012年   268篇
  2011年   400篇
  2010年   275篇
  2009年   433篇
  2008年   458篇
  2007年   274篇
  2006年   198篇
  2005年   233篇
  2004年   244篇
  2003年   293篇
  2002年   292篇
  2001年   376篇
  2000年   187篇
  1999年   232篇
  1998年   284篇
  1997年   174篇
  1996年   253篇
  1995年   303篇
  1994年   284篇
  1993年   171篇
  1992年   223篇
  1991年   92篇
  1990年   101篇
  1989年   225篇
  1988年   101篇
  1987年   101篇
  1986年   100篇
  1985年   276篇
  1984年   222篇
  1983年   183篇
  1982年   195篇
  1981年   306篇
  1980年   95篇
  1979年   83篇
  1978年   95篇
  1977年   68篇
  1976年   61篇
  1975年   84篇
  1974年   73篇
  1972年   80篇
  1971年   69篇
  1970年   60篇
排序方式: 共有9913条查询结果,搜索用时 15 毫秒
451.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
452.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
453.
With recently growing interest in the Active Search for Extraterrestrial Intelligence (SETI), in which humankind would send intentional signals to extraterrestrial civilizations, there have been increased concerns about appropriate policy, as well as the role of space law and ethics in guiding such activities. Implicit in these discussions are notions of responsibility and capability that affect judgments about whether humans or other civilizations should initiate transmissions. Existing protocols that guide SETI research address transmissions from Earth, but there is debate over whether these guidelines should inform de novo transmissions as well. Relevant responsibilities to address include (1) looking out for the interests of humankind as a whole, (2) being truthful in interstellar messages, and (3) benefiting extraterrestrial civilizations. Our capabilities as a species and a civilization affect how well we can fulfill responsibilities, as seen when we consider whether we will be able to reach consensus about message contents (and whether that would be desirable), and whether we have the capacity to decode messages from beings that rely on different sensory modalities. The interplay of these responsibilities and capabilities suggests that humankind should place increased emphasis on Active SETI.  相似文献   
454.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
455.
An efficient self-contained trajectory optimization software is generated by making use of de Pontécoulant's analytic lunar theory removing the need for an outside third body ephemeris program to compute the lunar and solar position vectors at each integration step. The accelerations being further resolved along the rotating Euler–Hill frame after expansion to third order in the spacecraft radial distance, the adjoint differential equations are derived in a direct manner complementing the generation of the dynamic system of equations for full compatibility. Because the variation of parameters equations are cast in terms of the nonsingular equinoctial elements with the perturbation accelerations resolved in their analytic form along the rotating axes, the adjoint equations are also derived in the same manner providing a highly efficient and accurate system of equations for rapid computations in conjunction with Aerospace Corporation's NLP2 nonlinear programming codes to search for the initial values of the multipliers that steer the spacecraft towards its target orbit in minimum time. Numerical simulations show that the solutions obtained by the analysis developed in this paper are essentially identical to the more indirect approach based on the use of inertial accelerations obtained from a separate ephemeris generator and subsequent conversions to the thrust frame and equinoctial system.  相似文献   
456.
457.
We have performed spectral processing of the data of experiments on radio sounding of circumsolar plasma by coherent S- and X-band signals from the spacecraft Ulysses, Mars Express, Rosetta, and Venus Express carried out from 1991 to 2009. The experiments were realized in the mode of coherent response, when a signal stabilized by the hydrogen standard is transmitted from the ground station to a spacecraft, received by the onboard systems, and retransmitted to the Earth with conserved coherence. Thus, the signal sounding the coronal plasma passes twice through the medium: on the propagation path ground station — spacecraft and on the same path in the opposite direction. The spectra of frequency fluctuations in both the bands are obtained and, using them, the radial dependences of fluctuation intensities are found, which can be approximated by a power law. It is shown that the ratio of intensities of frequency fluctuations in the S- and X-bands is comparable with the theoretical value and characterizes the degree of correlation of irregularities of the electron density along the propagation path ground station — spacecraft and back. Analysis of the correlation of frequency fluctuations on the two paths allows one to get a lower estimate of the outer scale of the circumsolar plasma turbulence. For heliocentric distances R = 10 solar radii (R S ) the outer scale is larger than 0.25R S .  相似文献   
458.
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment.  相似文献   
459.
On going flights of Foton satellites allow to carry out research in the following domains: effect of space flight and outer space factors such as microgravity, artificial gravity and space radiation on physical processes and biological organisms. Experts from many Russian and foreign scientific institutions participated in the research. Over a period of time from 1973 to 1997 there were launched 11 BION satellites designed by the Central Specialized Design Bureau for carrying out fundamental and applied research in the field of space biology, medicine, radio physics and radiobiology with participation of specialists from the foreign countries.The goal of the present investigation was in developing a numerical simulator aimed at determining gas concentration and temperature fields established inside the scientific module of the spacecraft “Bion-M” and to perform optimization studies, which could meet strong requirements for air quality and temperature range allowable for operation of different biological experiments.  相似文献   
460.
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号