首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10247篇
  免费   16篇
  国内免费   27篇
航空   4893篇
航天技术   3238篇
综合类   200篇
航天   1959篇
  2021年   91篇
  2019年   57篇
  2018年   238篇
  2017年   166篇
  2016年   138篇
  2015年   64篇
  2014年   204篇
  2013年   260篇
  2012年   284篇
  2011年   451篇
  2010年   321篇
  2009年   478篇
  2008年   483篇
  2007年   327篇
  2006年   198篇
  2005年   258篇
  2004年   247篇
  2003年   293篇
  2002年   292篇
  2001年   377篇
  2000年   187篇
  1999年   232篇
  1998年   284篇
  1997年   174篇
  1996年   253篇
  1995年   303篇
  1994年   284篇
  1993年   174篇
  1992年   224篇
  1991年   92篇
  1990年   101篇
  1989年   225篇
  1988年   101篇
  1987年   101篇
  1986年   99篇
  1985年   276篇
  1984年   222篇
  1983年   183篇
  1982年   195篇
  1981年   306篇
  1980年   95篇
  1979年   83篇
  1978年   95篇
  1977年   68篇
  1976年   61篇
  1975年   84篇
  1974年   73篇
  1972年   80篇
  1971年   69篇
  1970年   60篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The dependence of the wave resistance coefficients for planar periodic reliefs on the similarity parameters is investigated. It is proved that the wave resistance coefficients of the infinite reliefs and their finite analogs in the case of the whole wave numbers coincide, whereas in the case of the fractional wave numbers they differ.  相似文献   
972.
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.  相似文献   
973.
974.
975.
976.
A problem on low vibrations of a thin spherical shell is considered. A solid of finite dimensions is discretely attached to the shell by means of an elastic rod system. The calculation examples are presented.  相似文献   
977.
The derivation of parametric equations for a limiting surface in the space of internal forces and moments that act in the rod cross-sections, using the basic concepts of plasticity theory and conventional hypotheses of the rod theory, is presented. The plastic properties of rod material are described by the Mises criterion. A case of small displacements and strains under static simple loading is considered. The results of solving a number of problems of constructing limiting curves in the planes of internal forces and moments are given.  相似文献   
978.
Development of the μSCIRASTM (pronounced micro-Cyrus) multisensor for a period of over six years has produced a practical MEMS Inertial Measurement Unit (IMU). Using only three silicon sensors, a full-up IMU suitable for tactical grade navigation and guidance applications has been achieved. Iterative improvements in silicon sensor design and bulk micromachining processes have matured to the point where an IMU with an attractive price/performance ratio is now producible. This paper summarizes the design features and test results for an IMU with <100 deg/hr performance. Test results are shown for rate bias and acceleration bias over temperature. Production of this initial member of the μSCIRAS product family begins this year to support applications including guided artillery shells, technology insertion to decrease missile costs, navigation of remotely-piloted vehicles, dismounted soldier location devices and other navigation aids. The small size of this silicon multisensor and its ability to measure both angular rotation rate and linear acceleration provides a useful advantage in product packaging, cost, size, and system testing. The μSCIRAS Inertial Sensor Assembly (ISA) is housed in a 2 cubic inch package weighing less than 5 ounces (140 grams) requires less than 0.8 Watts of power. Continuing development will lead to greatly improved performance on the order of 1 deg/hr at low prices in high-volume production  相似文献   
979.
Nowadays operational models for solar activity forecasting are still based on the statistical relationship between solar activity and solar magnetic field evolution. In order to set up this relationship, many parameters have been proposed to be the measures. Conventional measures are based on the sunspot group classification which provides limited information from sunspots. For this reason, new measures based on solar magnetic field observations are proposed and a solar flare forecasting model supported with an artificial neural network is introduced. This model is equivalent to a person with a long period of solar flare forecasting experience.  相似文献   
980.
The receipt of the Pioneer Award has given me a chance to look back over my professional life and the opportunity to take stock of how I helped shape a small part of the world. While I hope this process entertains my contemporaries, more importantly, I hope it stimulates those that are engaged in actively shaping the present. To describe the need for automatic picture transmission (APT), I must retrace the historical development of meteorological satellites. The idea for weather observations from a satellite originated with a small group of meteorologists at the U.S. Army Signal Corps Research and Development Lab. at Ft. Monmouth, N.J., and resulted in the design of Vanguard II. The Tiros and TOS series of satellites, and the design of Nimbus, followed soon thereafter. However, a faster picture dissemination than was available at that time was needed, and it was this necessity that sparked the development of APT. Nimbus was originally intended to be an operational system, but the advent of simpler, less costly stabilization systems made the Tiros evolution the clear winner. The geosynchronous weather satellites started nearly a decade later and evolved from the NASA Application Technology Satellite (ATS) series. All three systems, existing polar orbiting weather satellites, APT, and geosynchronous weather satellites, have changed meteorology and the reliability of weather forecasting profoundly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号