首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9960篇
  免费   18篇
  国内免费   28篇
航空   4775篇
航天技术   3242篇
综合类   200篇
航天   1789篇
  2021年   92篇
  2019年   57篇
  2018年   236篇
  2017年   140篇
  2016年   129篇
  2015年   58篇
  2014年   204篇
  2013年   263篇
  2012年   268篇
  2011年   408篇
  2010年   279篇
  2009年   434篇
  2008年   459篇
  2007年   276篇
  2006年   198篇
  2005年   233篇
  2004年   245篇
  2003年   293篇
  2002年   292篇
  2001年   379篇
  2000年   187篇
  1999年   232篇
  1998年   284篇
  1997年   174篇
  1996年   253篇
  1995年   303篇
  1994年   284篇
  1993年   173篇
  1992年   224篇
  1991年   92篇
  1990年   101篇
  1989年   225篇
  1988年   101篇
  1987年   101篇
  1986年   100篇
  1985年   276篇
  1984年   222篇
  1983年   183篇
  1982年   195篇
  1981年   306篇
  1980年   95篇
  1979年   83篇
  1978年   95篇
  1977年   68篇
  1976年   61篇
  1975年   84篇
  1974年   73篇
  1972年   80篇
  1971年   69篇
  1970年   60篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
321.
The methodology is proposed and the mathematical model is developed for the purpose of numerical simulation of the power circuit of the gas-hydraulic actuator with displacing power source for the gimbaled nozzle control. It provides the highest power efficiency factor of the actuator as a part of aircraft by means of pulling together the profiles of available and required power.  相似文献   
322.
The paper highlights significance of the interturbine transition duct as part of the high pressure and low pressure turbine spool. The correlations have been suggested allowing us to estimate variation of the average cross section flow swirl while its passing the interturbine transition duct.  相似文献   
323.
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.  相似文献   
324.
Reconfiguration of multiprocessor systems makes it possible to improve their failure-resistance that is especially important for the integrated modular avionics systems. The algorithm considered in this paper allows minimizing the reservation and providing the better safety level and more effective flight completion or even its further execution in the case of failures of airborne equipment.  相似文献   
325.
Optical fibre sensing is becoming increasingly attractive in both the smart structure sphere of interest as well as the medical and industrial concerns. Fibre-optic interferometric sensors can be designed as compact and robust transducers. In general, the transduction mechanism involves the phase modulation of coherent or monochromatic light propagating through a fibre-optic cable, and detecting the changes in the energy associated with this phase change. Sensors based on this technique can generally be configured to be quite sensitive and measurements of a wide variety of physical parameters are achievable. Intrinsic features of optical fibres, such as immunity to electromagnetic interference, flexibility, thinness, strength and weight, make this ideal for sensor technology. In the process of developing fibre-optic sensors for laboratory experimentation, as well as generalised research, an appropriate, easy to use opto-electronic drive and measurement system is required. This paper discusses the operation of a programmable opto-electronic drive and measurement system  相似文献   
326.
327.
ABSTRACT

Two experiments examined cue reliance and risk-taking during desktop virtual wayfinding, and how they might be modulated by personality traits and external stressors. Participants navigated a series of virtual buildings and we manipulated the strength of probabilistic cues available to guide turn decisions. Navigators frequently discounted probabilistic cues and instead took risks, particularly when costs were low and potential benefits were high. Risk-taking was predicted by higher sense of direction and lower need for structure. Introducing a time stressor lowered risk-taking, with a higher relative reliance on probability-based information. This was most pronounced in females and those with a high need for structure. Results provide novel evidence that spatial cue reliance is modulated by individual differences and contextual constraints.  相似文献   
328.
One of the most important problems for performing a good design of the spacecraft attitude control law is connected to its robustness when some uncertainty parameters are present on the inertial and/or on the elastic characteristics of a satellite. These uncertainties are generally intrinsic on the modeling of complex structures and in the case of large flexible structures they can be also attributed to secondary effects associated to the elasticity. One of the most interesting issues in modeling large flexible space structures is associated to the evaluation of the inertia tensor which in general depends not only on the geometric ‘fixed’ characteristic of the satellite but also on its elastic displacements which of course in turn modify the ‘shape’ of the satellite. Usually these terms can be considered of a second order of magnitude if compared with the ones associated to the rigid part of a structure. However the increasing demand on the dimension of satellites due to the presence for instance of very large solar arrays (necessary to generate power) and/or large antennas has the necessity to investigate their effects on their global dynamic behavior in more details as a consequence. In the present paper a methodology based on classical Lagrangian approach coupled with a standard Finite Element tool has been used to derive the full dynamic equations of an orbiting flexible satellite under the actions of gravity, gravity gradient forces and attitude control. A particular attention has been paid to the study of the effects of flexibility on the inertial terms of the spacecraft which, as well known, influence its attitude dynamic behavior. Furthermore the effects of the attitude control authority and its robustness to the uncertainties on inertial and elastic parameters has been investigated and discussed.  相似文献   
329.
In this paper, a novel hybrid actuation system for satellite attitude stabilization is proposed along with its feasibility analysis. The system considered consists of two magnetic torque rods and one fluid ring to produce the control torque required in the direction in which magnetic torque rods cannot produce torque. A mathematical model of the system dynamics is derived first. Then a controller is developed to stabilize the attitude angles of a satellite equipped with the abovementioned set of actuators. The effect of failure of the fluid ring or a magnetic torque rod is examined as well. It is noted that the case of failure of the magnetic torque rod whose torque is along the pitch axis is the most critical, since the coupling between the roll or yaw motion and the pitch motion is quite weak. The simulation results show that the control system proposed is quite fault tolerant.  相似文献   
330.
Collinear Earth–Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence, effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincaré maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号