首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2566篇
  免费   29篇
  国内免费   14篇
航空   1014篇
航天技术   965篇
综合类   12篇
航天   618篇
  2022年   13篇
  2021年   29篇
  2019年   26篇
  2018年   73篇
  2017年   63篇
  2016年   49篇
  2015年   20篇
  2014年   83篇
  2013年   96篇
  2012年   76篇
  2011年   139篇
  2010年   104篇
  2009年   148篇
  2008年   160篇
  2007年   84篇
  2006年   66篇
  2005年   81篇
  2004年   81篇
  2003年   88篇
  2002年   57篇
  2001年   83篇
  2000年   40篇
  1999年   48篇
  1998年   54篇
  1997年   50篇
  1996年   43篇
  1995年   57篇
  1994年   39篇
  1993年   41篇
  1992年   53篇
  1991年   14篇
  1990年   18篇
  1989年   42篇
  1988年   19篇
  1987年   17篇
  1986年   14篇
  1985年   64篇
  1984年   51篇
  1983年   42篇
  1982年   42篇
  1981年   57篇
  1980年   34篇
  1979年   16篇
  1978年   18篇
  1977年   9篇
  1976年   16篇
  1975年   15篇
  1974年   12篇
  1971年   7篇
  1969年   8篇
排序方式: 共有2609条查询结果,搜索用时 15 毫秒
621.
针对航天电子产品广泛采用的Sn-Pb焊料在镀金表面焊接形成焊点的工艺,分析了工业及国内外航天相关标准文件中对焊接后焊点中含金量的要求以及焊点含金量、时效、器件不同封装形式对焊点可靠性的影响,并深入分析了合金焊点金相组织结构,最后介绍了一般去金工艺要求与去金不到位而导致器件失效案例。  相似文献   
622.
Temporal and Spatial Variation of the Ion Composition in the Ring Current   总被引:3,自引:0,他引:3  
A global view of the ring current ions is presented using data acquired by the instrument MICS onboard the CRRES satellite during solar maximum. The variations of differential intensities, energy spectra, radial profile of the energetic particles and the origin of the magnetic local time (MLT) asymmetry of the ring current have been investigated in detail. O+ ions are an important contributor to the storm time ring current. Its abundance in terms of number density increases with increasing geomagnetic activity as well as its energy density. However, a saturation value for the energy density of O+ ions has been found. The low-energy H+ ions show a dramatic intensification and a rapid decay. However, its density ratio during the storm maximum is almost constant. On the other hand, high-energy H+ ions first exhibit a flux decrease followed by a delayed increase. Its density ratio shows an anti-correlation with the storm intensity. Both the positions of the maximum flux of O+ and He+ depend on storm activity: they move to lower altitudes in the early stage of a storm and move back to higher L-values during the recovery phase. Whereas the position of H+ and He++ show almost no dependence on the Dst index. The energy density distributions in radial distance and magnetic local time show drastic differences for different ion species. It demonstrates that the ring current asymmetry mainly comes from oxygen and helium ions, but not from protons. The outward motion of O+ around local noon may have some implications for oxygen bursts in the magnetosheath during IMF Bz negative conditions as observed by GEOTAIL.  相似文献   
623.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   
624.
Zarnecki  J.C.  Leese  M.R.  Garry  J.R.C.  Ghafoor  N.  Hathi  B. 《Space Science Reviews》2002,104(1-4):593-611
The design and performance of the Surface Science Package (SSP) on the Huygens probe are discussed. This instrument consists of nine separate sensors that are designed to measure a wide range of physical properties of Titan's lower atmosphere, surface, and sub-surface. By measuring a number of physical properties of the surface it is expected that the SSP will be able to constrain the inferred composition and structure of the moon's near-surface environment. Although the SSP is primarily designed to sense properties of the surface, some of its sensors will also make measurements of the atmosphere along the probe's entry path and will complement the data gathered by other experiments on the Huygens probe. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
625.
This article proposes a short review of our present knowledge of solar system magnetospheres, with the purpose of placing the study of Saturn’s magnetosphere in the context of a comparative approach. We describe the diversity of solar system magnetospheres and the underlying causes of this diversity: nature and magnetization state of the planetary obstacle, presence or not of a dense atmosphere, rotation state of the planet, existence of a system of satellites, rings and neutral gas populations in orbit around the planet. We follow the “russian doll” hierarchy of solar system magnetospheres to briefly describe the different objects of this family: the heliosphere, which is the Sun’s magnetosphere; the “elementary” magnetospheres of the inner planets, Earth and Mercury; the “complex” magnetospheres of the giant planets, dominated by planetary rotation and the presence of interacting objects within their magnetospheric cavities, some of which, like Ganymede, Io or Titan, produce small intrinsic or induced magnetospheres inside the large one.We finally describe the main original features of Saturn’s magnetosphere as we see them after the Voyager fly-bys and before the arrival of Cassini at Saturn, and list some of the key questions which Cassini will have to address during its four-year orbital tour.  相似文献   
626.
It is commonly believed that comets are made of primordial material. As a consequence, they can reveal more information about the origin of our solar system. To interpret the coma composition measurements of comet Churyumov–Gerasimenko that will be collected by the Rosetta mission, models of the coma chemistry have to be constructed. However, programming the chemistry of a cometary coma is extremely complex due to the large number of species and reactions involved. Moreover, such a program needs to be very flexible as one may want to extend, change, or update the set of species, reactions, and reaction rates. Therefore, we developed software to manage a database of species and reactions and to generate code automatically to compute source/loss balances. This database includes the data from the UMIST database and the ion–molecule reactions collected by V.G. Anicich. To use all these databases together, a lot of practical problems need to be solved, but the result is an enormous source of information about chemical reactions that can be used in chemical models, not only for comets but also for other applications.  相似文献   
627.
Two accelerometric records coming from the SAMSes es08 sensor in the Columbus module, the so-called Runs 14 and 33 in terms of the IVIDIL experiment, has been studied here using standard digital signal analysis techniques. The principal difference between both records is the vibrational state of the IVIDIL experiment, that is to say, during Run 14 the shaking motor of the experiment is active while that in Run 33 this motor is stopped. Identical procedures have been applied to a third record coming from the SAMSII 121f03 sensor located in the Destiny module during an IVIDIL quiescent period. All records have been downloaded from the corresponding public binary accelerometric files from the NASA Principal Investigator Microgravity Services, PIMS website and, in order to be properly compared, have the same number of data. Results detect clear differences in the accelerometric behavior, with or without shaking, despite the care of the designers to ensure the achievement of the ISS μg-vibrational requirements all along the experiments.  相似文献   
628.
The development of a fiber based laser architecture will enable novel applications in environments which have hitherto been impossible due to size, efficiency and power of traditional systems. Such a new architecture has been developed by the International Coherent Amplification Network (ICAN) project. Here we present an analysis of utilizing an ICAN laser for the purpose of tracking and de-orbiting hyper-velocity space debris. With an increasing number of new debris from collisions of active, derelict and new payloads in orbit, there is a growing danger of runaway debris impacts. Due to its compactness and efficiency, it is shown that space-based operation would be possible. For different design parameters such as fiber array size, it is shown that the kHz repetition rate and kW average power of ICAN would be sufficient to de-orbit small 1–10 cm debris within a single instance via laser ablation.  相似文献   
629.
Interplanetary outflows from coronal mass ejections (ICMEs) are structures shaped by their magnetic fields. Sometimes these fields are highly ordered and reflect properties of the solar magnetic field. Field lines emerging in CMEs are presumably connected to the Sun at both ends, but about half lose their connection at one end by the time they are observed in ICMEs. All must eventually lose one connection in order to prevent a build-up of flux in the heliosphere; but since little change is observed between 1 AU and 5 AU, this process may take months to years to complete. As ICMEs propagate out into the heliosphere, they kinematically elongate in angular extent, expand from higher pressure within, distort owing to inhomogeneous solar wind structure, and can compress the ambient solar wind, depending upon their relative speed. Their magnetic fields may reconnect with solar wind fields or those of other ICMEs with which they interact, creating complicated signatures in spacecraft data.  相似文献   
630.
Sunspots are the most prominent magnetic features on the Sun but it is only within the last few years that the intricate structure of their magnetic fields has been resolved. In the penumbra the fields in bright and dark filaments differ in inclination by 30°. The field in the bright filaments is less inclined to the vertical, while the field in dark filaments becomes almost horizontal at the edge of the spot. Recent models suggest that this interlocking-comb structure is maintained through downward pumping of magnetic flux by small-scale granular convection, and that filamentation originates as a convective instability. Within the bright filaments convection patterns travel radially owing to the inclination of the field. A proper understanding of these processes requires new observations, from space and from the ground, coupled with large-scale numerical modelling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号