Stellar winds are found in hot and luminous stars of all types. We see evidence of these winds in P Cygni profiles of resonance lines in the UV spectral regions, and obtain density information from them, and from optical emission lines and from free-free radiation in the infrared and radio continua from the ionized plasma. Data recently acquired from the IUE satellite are now sufficient to enable us to outline the broad parameters of these winds. It is found that for the hottest stars, those of 0-type, the mass loss rate ? is proportional to Lα. A proportionality between ? and L is predicted by the theory of radiatively driven winds; the value for α is also anticipated by the details of the theory. The dispersion of individual stellar values may be due to observational uncertainty alone, but it may also suggest that other physical parameters affect the stellar winds. The kinetic energy input of the stellar winds to the interstellar medium is considerable and may, in aggregate, be of the same order as the contribution of supernovae. 相似文献
The algorithms being implemented in EUMETSAT’s IASI Level 2 Product Processing Facility are validated with real case situations using AIRS data and comparing the retrieved atmospheric states with ECMWF analyses. The tests have been performed for clear-sky ocean scenes during daytime.
The Empirical Orthogonal Function (EOF) retrievals show very good performance, with retrieved atmospheric states standard deviations between 1 and 2 K in temperature and 10% and 20% in relative humidity when compared with ECMWF analysis in the troposphere. The EOF retrievals show relatively smooth profiles.
Results from an iterative retrieval show a standard deviation between 2 and 3 K in temperature and 10% and 30% in relative humidity when compared with ECMWF analyses in the troposphere. They tend to show meteorologically reasonable discontinuities in both temperature and relative humidity. This seems to be the reason why they do not compare as well with ECMWF analyses as the EOF retrievals do. Whether they are closer to reality or not will have to be tested with co-located radiosondes or similar more accurate data, which generally do not exhibit such smooth vertical profiles as ECMWF analyses do. 相似文献
A 60 GHz phased array system for mm-wave frequency in 5 G is introduced and a 5 bit digitally controlled phase shifter in 40 nm CMOS technology is presented. In a phased array system,the signal to noise ratio(SNR)of the receiver is improved with the beaming forming function. Therefore,the communication data rate and distance are improved accordingly. The phase shifter is the key component for achieving the beam forming function,and its resolution and power consumption are also very critical. In the second half of this paper,an analysis of phase shifter is introduced,and a 60 GHz 5 bit digitally controlled phase shifter in 40 nm complementary metal oxide semiconductor(CMOS)technology is presented. In this presented phase shifter,a hybrid structure is implemented for its advantage on lower phase deviation while keeping comparable loss. Meanwhile,this digitally controlled phase shifter is much more compact than other works. For all 32 states,the minimum phase error is 1.5°,and the maximum phase error is 6.8°. The measured insertion loss is-20.9±1 d B including pad loss at 60 GHz and the return loss is more than 10 d B over 57—64 GHz. The total chip size is 0.24 mm2 with 0 m W DC power consumption. 相似文献
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017. 相似文献
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced. 相似文献
The NASA Discovery Deep Impact mission involves a unique experiment designed to excavate pristine materials from below the
surface of comet. In July 2005, the Deep Impact (DI) spacecraft, will release a 360 kg probe that will collide with comet
9P/Tempel 1. This collision will excavate pristine materials from depth and produce a crater whose size and appearance will
provide fundamental insights into the nature and physical properties of the upper 20 to 40 m. Laboratory impact experiments
performed at the NASA Ames Vertical Gun Range at NASA Ames Research Center were designed to assess the range of possible outcomes
for a wide range of target types and impact angles. Although all experiments were performed under terrestrial gravity, key
scaling relations and processes allow first-order extrapolations to Tempel 1. If gravity-scaling relations apply (weakly bonded
particulate near-surface), the DI impact could create a crater 70 m to 140 m in diameter, depending on the scaling relation
applied. Smaller than expected craters can be attributed either to the effect of strength limiting crater growth or to collapse
of an unstable (deep) transient crater as a result of very high porosity and compressibility. Larger then expected craters
could indicate unusually low density (< 0.3 g cm−3) or backpressures from expanding vapor. Consequently, final crater size or depth may not uniquely establish the physical
nature of the upper 20 m of the comet. But the observed ejecta curtain angles and crater morphology will help resolve this
ambiguity. Moreover, the intensity and decay of the impact “flash” as observed from Earth, space probes, or the accompanying
DI flyby instruments should provide critical data that will further resolve ambiguities. 相似文献
Differences between the dynamical characteristics of the northern hemisphere (NH) and southern hemisphere (SH) stratosphere (e.g., the temperature, the strength of polar vortex, and the mean meridional circulation) produce hemispherically asymmetrical distributions of chemical species. In this paper, we use global models to briefly discuss various effects on chemical species caused by this asymmetrical distribution, especially on stratospheric ozone. The role of hemispheric asymmetries in chlorine and bromine loadings on mid- and high latitude ozone depletion is particularly discussed. 相似文献