首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   407篇
  免费   0篇
  国内免费   4篇
航空   179篇
航天技术   93篇
综合类   2篇
航天   137篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   18篇
  2017年   9篇
  2015年   5篇
  2014年   19篇
  2013年   26篇
  2012年   18篇
  2011年   34篇
  2010年   17篇
  2009年   25篇
  2008年   20篇
  2007年   26篇
  2006年   19篇
  2005年   15篇
  2004年   14篇
  2003年   11篇
  2002年   6篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1970年   1篇
  1968年   3篇
  1967年   4篇
  1966年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
261.
Galactic cosmic ray nuclei and energetic protons produced in solar flares and accelerated by coronal mass ejections are the main sources of high-energy particles of extraterrestrial origin in near-Earth space and inside the Earth’s atmosphere. The intensity of galactic cosmic rays inside the heliosphere is strongly influenced by the modulation of the interstellar source particles on their way through interplanetary space. Among others, this modulation depends on the activity of the Sun, and the resulting intensity of the energetic particles in the atmosphere is an indicator of the solar activity. Therefore, rare isotopes found in historical archives and produced by spallation reactions of primary and secondary hadrons of cosmic origin in the atmosphere, so-called cosmogenic nuclides, can be used to reconstruct the solar activity in the past. The production rate of 10Be, one of the cosmogenic nuclides most adequate to study the solar activity, is presented showing its variations with geographic latitude and altitude and the dependence on different production cross-sections present in literature. In addition, estimates for altitude integrated production rates of 10Be at different locations since the early nineteen sixties are shown.  相似文献   
262.
Determining how the heliospheric magnetic field and plasma connect to the Sun’s corona and photosphere is, perhaps, the central problem in solar and heliospheric physics. For much of the heliosphere, this connection appears to be well understood. It is now generally accepted that so-called coronal holes, which appear dark in X-rays and are predominantly unipolar at the photosphere, are the sources of quasi-steady wind that is generally fast, >500?km/s, but can sometimes be slow. However, the connection to the Sun of the slow, non-steady wind is far from understood and remains a major mystery. We review the existing theories for the sources of the non-steady wind and demonstrate that they have difficulty accounting for both the observed composition of the wind and its large angular extent. A?new theory is described in which this wind originates from the continuous opening and closing of narrow open field corridors in the corona, which give rise to a web of separatrices (the S-Web) in the heliosphere. Note that in this theory the corona—heliosphere connection is intrinsically dynamic, at least for this type of wind. Support for the S-Web model is derived from MHD solutions for the corona and wind during the time of the August 1, 2008 eclipse. Additionally, we perform fully dynamic numerical simulations of the corona and heliosphere in order to test the S-Web model as well as the interchange model proposed by Fisk and co-workers. We discuss the implications of our simulations for the competing theories and for understanding the corona—heliosphere connection, in general.  相似文献   
263.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   
264.
Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three-dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.  相似文献   
265.
The Virtual Habitat (V-HAB), is a Life Support System (LSS) simulation, created to perform dynamic simulation of LSS’s for future human spaceflight missions. It allows the testing of LSS robustness by means of computer simulations, e.g. of worst case scenarios.  相似文献   
266.
Space Science Reviews - Meso-scale auroral forms, such as poleward boundary intensifications, streamers, omega bands, beads and giant undulations, are manifestations of dynamic processes in the...  相似文献   
267.
One of the main drivers behind the SimSAC project and the CEASIOM software is to bring stability analysis and control system design earlier into the aircraft conceptual design process. Within this paper two very different aircraft are considered, a conventional T-tail based on the existing EA500 Very Light Jet and the second, a novel Z-wing configuration known as the GAV or general aviation vehicle. The first aircraft serves as a baseline comparison for the second, and the cruise case is considered as a benchmark for identifying potential drag reductions and aircraft stability characteristics. CEASIOM, the Computerised Environment for Aircraft Synthesis and Integrated Optimisation Methods, is used to generate aerodynamic data sets for both aircraft, create trim conditions and the associated linear models for classical stability analysis. The open-loop Z-wing configuration is shown to display both highly unstable and coupled modes before a multivariable Stability Augmentation System (SAS) is applied both to decouple and stabilise the aircraft. Within this paper, these two aircraft provide a test case with which to demonstrate the capabilities of the CEASIOM environment and the tools which have been developed during the SimSAC project. This new software suite is shown to allow conceptual development of unconventional novel configurations from mass properties through adaptive-fidelity aerodynamics to linear analysis and control system design.  相似文献   
268.
In this article, I will attempt to give an overview of the motivations for studying black holes and of the current major problems in the field. I will also give some perspectives on what can be done in the future, focusing on instrumentation which has already been approved. This chapter will necessarily be more speculative than the other chapters in this volume.  相似文献   
269.
The period January–February 2008 was characterized by four Sudden Stratospheric Warmings (SSWs) in the Northern Hemisphere, of which the last warming, at the end of February 2008, was a major warming. A significant decrease in mesospheric water vapour (H2O) of more than 2 ppmv (∼40%) was observed by the ground-based microwave (GBMW) radiometer in Seoul, S. Korea [37.3°N, 126.3°E] during the major SSW. A comparison with ground-based mesospheric H2O observations from the mid-latitude station in Bern [46.9°N, 7°E] revealed an anticorrelation in the mesospheric H2O data during the major SSW. In addition, prior to the major warming, strong periodic fluctuations were recorded in the Aura MLS vertical temperature distribution between 15 and 0.05 hPa at Seoul. The mesospheric temperature oscillation was found to have a period of ∼10–14 days with a persistency of 3–4 cycles.  相似文献   
270.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号