首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4976篇
  免费   2篇
  国内免费   12篇
航空   2579篇
航天技术   1581篇
综合类   182篇
航天   648篇
  2021年   30篇
  2019年   27篇
  2018年   72篇
  2017年   38篇
  2016年   40篇
  2014年   81篇
  2013年   105篇
  2012年   113篇
  2011年   171篇
  2010年   109篇
  2009年   193篇
  2008年   197篇
  2007年   123篇
  2006年   98篇
  2005年   89篇
  2004年   122篇
  2003年   146篇
  2002年   182篇
  2001年   201篇
  2000年   95篇
  1999年   130篇
  1998年   156篇
  1997年   99篇
  1996年   141篇
  1995年   169篇
  1994年   146篇
  1993年   96篇
  1992年   123篇
  1991年   59篇
  1990年   65篇
  1989年   126篇
  1988年   58篇
  1987年   61篇
  1986年   54篇
  1985年   155篇
  1984年   122篇
  1983年   109篇
  1982年   120篇
  1981年   156篇
  1980年   58篇
  1979年   47篇
  1978年   57篇
  1977年   37篇
  1976年   40篇
  1975年   49篇
  1974年   41篇
  1972年   49篇
  1971年   47篇
  1970年   30篇
  1969年   33篇
排序方式: 共有4990条查询结果,搜索用时 31 毫秒
371.
Neugebauer  M.  Steinberg  J.T.  Tokar  R.L.  Barraclough  B.L.  Dors  E.E.  Wiens  R.C.  Gingerich  D.E.  Luckey  D.  Whiteaker  D.B. 《Space Science Reviews》2003,105(3-4):661-679
Some of the objectives of the Genesis mission require the separate collection of solar wind originating in different types of solar sources. Measurements of the solar wind protons, alpha particles, and electrons are used on-board the spacecraft to determine whether the solar-wind source is most likely a coronal hole, interstream flow, or a coronal mass ejection. A simple fuzzy logic scheme operating on measurements of the proton temperature, the alpha-particle abundance, and the presence of bidirectional streaming of suprathermal electrons was developed for this purpose. Additional requirements on the algorithm include the ability to identify the passage of forward shocks, reasonable levels of hysteresis and persistence, and the ability to modify the algorithm by changes in stored constants rather than changes in the software. After a few minor adjustments, the algorithm performed well during the initial portion of the mission. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
372.
Aerts  Conny  De Cat  Peter 《Space Science Reviews》2003,105(1-2):453-492
In this review we present the current status of line-profile-variation studies of β Cep stars. Such studies have been performed for 26 bright members of this class of pulsating stars in the past 25 years. We describe all these currently available data and summarize the interpretations based on them in terms of the excited pulsation modes. We emphasize that line-profile variations offer a much more detailed picture of the pulsational behaviour of pulsating stars compared to ground-based photometric data. The latter, however, remain necessary to unravel the often complex frequency pattern and to achieve unambiguous mode identification for multiperiodic β Cep stars and also to derive the pulsational properties of the faint members of the class. We highlight the statistical properties of the sample of 26 stars for which accurate spectroscopic studies are available and point out some future prospects. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
373.
Novel wideband multimode hybrid interferometer system   总被引:3,自引:0,他引:3  
In this paper, a novel hybrid of a three-element interferometer comprised of multimode antennas is analyzed. The phase ambiguities associated with the long baselines of the interferometer are resolved using the "coarse" angle estimates provided by the multimode antenna. This results in the elimination of the short baseline interferometers of the conventional five-element interferometer. It is shown here that the signal-to-noise ratio (SNR) must be above a threshold value to resolve the phase ambiguities with a high degree of probability. An expression that shows the dependence of this threshold SNR on the interferometer spacing and the variance of the angle estimates provided by the multimode antenna is derived. A single three-element wideband multimode antenna interferometer can replace several five-element conventional interferometers, each covering a separate frequency band.  相似文献   
374.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
375.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
376.
We review observations from Voyager 2 of CIRs and merged CIRs in the outer heliosphere. The rather simple characteristics of the CIR-associated changes in plasma, magnetic field, and particles become more complex as observations are made at greater and greater distances. Pickup ions from charge exchange undoubtedly play an important role in the structure, but the full details are not yet understood. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
377.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
378.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
379.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
380.
Polar format algorithm for bistatic SAR   总被引:4,自引:0,他引:4  
Matched filtering (MF) of phase history data is a mathematically ideal but computationally expensive approach to bistatic synthetic aperture radar (SAR) image formation. Fast backprojection algorithms (BPAs) for image formation have recently been shown to give improved O(N/sup 2/ log/sub 2/N) performance. An O(N/sup 2/ log/sub 2/N) bistatic polar format algorithm (PFA) based on a bistatic far-field assumption is derived. This algorithm is a generalization of the popular PFA for monostatic SAR image formation and is highly amenable to implementation with existing monostatic image formation processors. Limits on the size of an imaged scene, analogous to those in monostatic systems, are derived for the bistatic PFA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号