首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   0篇
  国内免费   1篇
航空   92篇
航天技术   37篇
综合类   2篇
航天   82篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   9篇
  2011年   15篇
  2010年   9篇
  2009年   19篇
  2008年   8篇
  2007年   16篇
  2006年   12篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
201.
202.
The composition of the solar wind is largely determined by the composition of the source material, i.e. the present-day composition of the outer convective zone. It is then modified by the processes which operate in the transition region and in the inner corona. In situ measurements of the solar wind composition give a unique opportunity to obtain information on the isotopic and elemental composition of the Sun. However, elemental — and to some degree also isotopic — fractionation can occur in the flow of matter from the outer convective zone into the interplanetary space. The most important examples of elemental fractionation are the well-known FIP/FIT effect (First Ionization Potential/Time) and the sometimes dramatic variations of the helium abundance relative to hydrogen in the solar wind. A thorough investigation of fractionation processes which cause compositional variations in different solar wind regimes is necessary to make inferences about the solar source composition from solar wind observations. Our understanding of these processes is presently improving thanks to the detailed diagnostics offered by the optical instrumentation on SOHO. Correlated observations of particle instruments on Ulysses, WIND, and SOHO, together with optical observations will help to make inferences for the solar composition. Continuous in situ observations of several isotopic species with the particle instruments on WIND and SOHO are currently incorporated into an experimental database to infer isotopic fractionation processes which operate in different solar wind regimes between the solar surface and the interplanetary medium. Except for the relatively minor effects of secular gravitational sedimentation which works at the boundary between the outer convective zone and the radiative zone, refractory elements such as Mg can be used as faithful witnesses to monitor the magnitude of these processes. With theoretical considerations it is possible to make inferences about the importance of isotopic fractionation in the solar wind from a comparison of optical and in situ observations of elemental fractionation with the corresponding models. Theoretical models and preliminary results from particle observations indicate that the combined isotope effects do not exceed a few percent per mass unit. In the worst case, which concerns the astrophysically important 3He/4He ratio, we expect an overall effect of at most several percent in the sense of a systematic depletion of the heavier isotope. Continued observations with WIND, SOHO, and ACE, and, with the revival of the foil technique, with the upcoming Genesis mission will further consolidate our knowledge about the relation between solar wind dynamics and solar wind composition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
203.
The membrane-bound guanylyl cyclases A and B (GC-A/B), which are receptors for natriuretic peptides, are expressed in cancer cells including melanomas and may represent new anticancer targets. Here, we report down-regulation of GC-A/B expression in human metastatic melanoma cells at simulated weightlessness in comparison to 1g conditions, suggesting attenuation of metastatic potential in weightlessness.  相似文献   
204.
205.
Gloeckler  G.  Cain  J.  Ipavich  F.M.  Tums  E.O.  Bedini  P.  Fisk  L.A.  Zurbuchen  T.H.  Bochsler  P.  Fischer  J.  Wimmer-Schweingruber  R.F.  Geiss  J.  Kallenbach  R. 《Space Science Reviews》1998,86(1-4):497-539
The Solar Wind Ion Composition Spectrometer (SWICS) and the Solar Wind Ions Mass Spectrometer (SWIMS) on ACE are instruments optimized for measurements of the chemical and isotopic composition of solar and interstellar matter. SWICS determines uniquely the chemical and ionic-charge composition of the solar wind, the thermal and mean speeds of all major solar wind ions from H through Fe at all solar wind speeds above 300 km s−1 (protons) and 170 km s−1 (Fe+16), and resolves H and He isotopes of both solar and interstellar sources. SWICS will measure the distribution functions of both the interstellar cloud and dust cloud pickup ions up to energies of 100 keV e−1. SWIMS will measure the chemical, isotopic and charge state composition of the solar wind for every element between He and Ni. Each of the two instruments uses electrostatic analysis followed by a time-of-flight and, as required, an energy measurement. The observations made with SWICS and SWIMS will make valuable contributions to the ISTP objectives by providing information regarding the composition and energy distribution of matter entering the magnetosphere. In addition, SWICS and SWIMS results will have an impact on many areas of solar and heliospheric physics, in particular providing important and unique information on: (i) conditions and processes in the region of the corona where the solar wind is accelerated; (ii) the location of the source regions of the solar wind in the corona; (iii) coronal heating processes; (iv) the extent and causes of variations in the composition of the solar atmosphere; (v) plasma processes in the solar wind; (vi) the acceleration of particles in the solar wind; (vii) the physics of the pickup process of interstellar He in the solar wind; and (viii) the spatial distribution and characteristics of sources of neutral matter in the inner heliosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
206.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   
207.
Our study of solar cycle irradiance variability in the UV between 200 and 400 nm requires a detailed knowledge of the composition of the solar spectrum in this wavelength range. We compute the synthetic spectrum from 250 to 300 nm and compare it with ATLAS3 and SOLSTICE observations. Synthetic solar spectra for solar minimum and maximum conditions show large variations in broad, strong UV lines. Strong lines of FeI between 260 nm and 264 nm show increases between 0.4× and 3×in their max/min ratio. Our ``broad lines' database shows 167 lines with similar properties between 200 nm and 400 nm. Our results raise issues of the importance of such large variability in narrow bands and the difficulty of detection in measurements with spectral resolutions of 1 nm.  相似文献   
208.
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).  相似文献   
209.
The LISA Mission (Laser Interferometer Space Antenna) is currently under mission formulation with a launch date planned in 2020. The purpose of the mission is the observation of gravitational waves at frequencies between 0.1 mHz and 1 Hz by measuring distance fluctuations between inertial reference points, represented by cubic proof masses. In order to provide a sufficient sensitivity of the instrument, distance fluctuations between two inertial reference points must be measured with a strain accuracy of around 10?20 Hz?1/2. This is achieved by setting up a laser interferometer with a base-length of 5?106 km and a path-length measurement noise in the order of 10 pm?Hz?1/2. For a correct evaluation of the data on the ground, it is essential that the science data telemetry preserves all required frequency domain information. That is, any on-board data-processing and down-sampling must be done with great care in order not to introduce aliasing or other artifacts into the data stream. As an additional complication, most of the optical metrology data is dominated by laser phase noise which is about eight orders of magnitude larger than the required instrument sensitivity. However, by applying a method called “time-delayed interferometry” during the ground data processing, this laser phase noise can be eliminated from the data. This method has already been demonstrated in a detailed simulation environment, but it requires a very careful filtering, synchronization, and interpolation of the individual data streams. Last but not least, a calibration of system parameters is necessary in many areas of the LISA measurement system. The system design must therefore ensure that all data required for these calibrations is available on-ground in a quality that allows a successful computation of the calibration coefficients within a reasonable time-frame. The data streams do not only include data from the optical metrology system, but also from the drag-free and attitude control system which are used to derive other information, such as the charge state of the proof mass. This yields a strong coupling between the different disciplines since data that is only used for housekeeping purposes in other missions becomes an essential part of the science data stream for the LISA mission. This paper gives an overview of the LISA measurement and data-processing chain. It highlights the most challenging areas that have been identified so far and describes the intended solution methods.  相似文献   
210.
Peter Creola 《Space Policy》1991,7(4):289-294
This article looks at the issues facing the ESA ministerial meeting in November 1991. The background to European space collaboration is outlined and the current position on the Hermes and Columbus programmes is described. The financial overrun of the Hermes programme is referred to and set in the context of the overall financial problems facing the ministers. Finally, possible areas of saving are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号