首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   0篇
  国内免费   1篇
航空   207篇
航天技术   38篇
综合类   2篇
航天   92篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   26篇
  2010年   15篇
  2009年   18篇
  2008年   9篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
31.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   
32.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   
33.
Registration of secondary cosmic ray neutrons is a convenient tool for investigation of primary cosmic ray variations and meteorological effects as well. At present a large network of neutron monitors exists, providing the studies of cosmic ray variations related to the interplanetary conditions and geomagnetic activity. At the same time cosmic ray variations may be caused by some atmospheric processes. In this connection, using the data from standard and lead-free neutron monitors, and gamma and muon detectors, we studied relations between rain flows and neutron, gamma and ionization component behavior. To explain observable results the calculations of neutron and gamma absorption and albedo neutron spectra have been performed on the basis of universal software package FLUKA-2006. In this study we used hourly data on the neutron flux, corrected for barometric pressure and data from local meteorological stations. It was shown that secondary neutron radiation, recorded by lead-free NM, and gamma radiation as well are strongly effected by meteorological factors. The neutron component behavior depends on the moisture content in the soil, and above its surface.  相似文献   
34.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   
35.
CEASIOM is a multidisciplinary software environment for aircraft design that has been developed as part of the European Framework 6 SimSAC project. It closely integrates discipline-specific tools such as those used for CAD, grid generation, CFD, stability analysis and control system design. The environment allows the user to take an initial design from geometry definition and aerodynamics generation through to full six degrees of freedom simulation and analysis. Key capabilities include variable fidelity aerodynamics tools and aeroelasticity modules. The purpose of this paper is to demonstrate the potential of CEASIOM by presenting the results of a Design, Simulate and Evaluate (DSE) exercise applied to a novel, project specific, transonic cruiser configuration called the TCR. The baseline TCR configuration is first defined using conventional methods, which is then refined and improved within the CEASIOM software environment. A wind tunnel model of this final configuration was then constructed, tested and used to verify the results generated using CEASIOM.  相似文献   
36.
In heavy ion radiotherapy and space travel humans are exposed to energetic heavy ions (C, Si, Fe and others). This type of irradiation often produces more severe biological effects per unit dose than more common X-rays. A new Monte Carlo model generates a physical space with the complex geometry of human tissue or a cell culture based model of tissue, which is affected by the passage of ionizing radiation. For irradiation, the model relies on a physical code for the ion track structure; for tissues, cellular maps are derived from two- or three-dimensional confocal microscopy images using image segmentation algorithm, which defines cells as pixilated volumes. The model is used to study tissue-specific statistics of direct ion hits and the remote ion action on cells. As an application of the technique, we considered the spatial pattern of apoptotic cells after heavy ion irradiation. The pattern of apoptosis is modeled as a stochastic process, which is defined by the action cross section taken from available experimental data. To characterize the degree of apoptosis, an autocorrelation function that describes the spatial correlation of apoptotic cells is introduced. The values of the autocorrelation function demonstrate the effect of the directionality of the radiation track on the spatial arrangements of inactivated cells in tissue. This effect is intrinsic only to high linear-energy-transfer radiation.  相似文献   
37.
A technique for computationally determining the thermophysical properties of high-energy-density matter (HEDM) propellants is presented. HEDM compounds are of interest in the liquid rocket engine industry due to their high density and high energy content relative to existing industry-standard propellants. In order to accurately model rocket engine performance, cost and weight in a conceptual design environment, several thermodynamic and physical properties are required over a range of temperatures and pressures. The approach presented here combines quantum mechanical and molecular dynamic (MD) calculations and group additivity methods. A method for improving the force field model coefficients used in the MD is included. This approach is used to determine thermophysical properties for two HEDM compounds of interest: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). The modified force field approach provides results that more accurately match experimental data than the unmodified approach. Launch vehicle and Lunar lander case studies are presented to quantify the system level impact of employing quadricyclane and DMAZ rather than industry standard propellants. In both cases, the use of HEDM propellants provides reductions in vehicle mass compared to industry standard propellants. The results demonstrate that HEDM propellants can be an attractive technology for future launch vehicle and Lunar lander applications.  相似文献   
38.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   
39.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号