首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   0篇
  国内免费   1篇
航空   207篇
航天技术   38篇
综合类   2篇
航天   92篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   26篇
  2010年   15篇
  2009年   18篇
  2008年   9篇
  2007年   17篇
  2006年   13篇
  2005年   8篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1996年   3篇
  1995年   1篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
181.
Space systems play an important role in sustaining the development, prosperity and security of many nations. As more nations become critically reliant on space systems, questions of maintaining safety and strategic stability in outer space have come to the fore. Transparency and Confidence-Building Measures (TCBMs) for outer space activities have an important role to play in providing clarity about the intentions of States and in articulating norms of behaviour in outer space. TCBMs take several forms. They may be the elaboration of basic principles related to the exploration and use of outer space, political measures related to establishing norms of conduct, information-sharing activities to improve the transparency of outer space activities, operational practices which demonstrate a commitment to mutual cooperation in outer space, or consultative mechanisms. We present an analytical framework for evaluating potential TCBMs and illustrate the application of this framework to examples of potential operational, regulatory, treaty-based and declaratory TCBMs.  相似文献   
182.
Determining the origin of volatiles on terrestrial planets and quantifying atmospheric loss during planet formation is crucial for understanding the history and evolution of planetary atmospheres. Using geochemical observations of noble gases and major volatiles we determine what the present day inventory of volatiles tells us about the sources, the accretion process and the early differentiation of the Earth. We further quantify the key volatile loss mechanisms and the atmospheric loss history during Earth’s formation. Volatiles were accreted throughout the Earth’s formation, but Earth’s early accretion history was volatile poor. Although nebular Ne and possible H in the deep mantle might be a fingerprint of this early accretion, most of the mantle does not remember this signature implying that volatile loss occurred during accretion. Present day geochemistry of volatiles shows no evidence of hydrodynamic escape as the isotopic compositions of most volatiles are chondritic. This suggests that atmospheric loss generated by impacts played a major role during Earth’s formation. While many of the volatiles have chondritic isotopic ratios, their relative abundances are certainly not chondritic again suggesting volatile loss tied to impacts. Geochemical evidence of atmospheric loss comes from the \({}^{3}\mathrm{He}/{}^{22}\mathrm{Ne}\), halogen ratios (e.g., F/Cl) and low H/N ratios. In addition, the geochemical ratios indicate that most of the water could have been delivered prior to the Moon forming impact and that the Moon forming impact did not drive off the ocean. Given the importance of impacts in determining the volatile budget of the Earth we examine the contributions to atmospheric loss from both small and large impacts. We find that atmospheric mass loss due to impacts can be characterized into three different regimes: 1) Giant Impacts, that create a strong shock transversing the whole planet and that can lead to atmospheric loss globally. 2) Large enough impactors (\(m_{\mathit{cap}} \gtrsim \sqrt{2} \rho_{0} (\pi h R)^{3/2}\), \(r_{\mathit{cap}}\sim25~\mbox{km}\) for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where \(h\), \(R\) and \(\rho_{0}\) are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (\(m_{\mathit{min}}>4 \pi\rho_{0} h^{3}\), \(r_{\mathit {min}}\sim 1~\mbox{km}\) for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with \(r_{\mathit{min}} < r < r_{\mathit{cap}}\) are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is ’wasted’ by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% \(M_{\oplus }\) is able to erode the entire current Earth’s atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.  相似文献   
183.
Liquid water is essential for life as we know it, i.e. carbon-based life. Although other compound-solvent pairs that could exist in very specific physical environments could be envisaged, the elements essential to carbon and water-based life are among the most common in the universe. Carbon molecules and liquid water have physical and chemical properties that make them optimised compound-solvent pairs. Liquid water is essential for important prebiotic reactions. But equally important for the emergence of life is the contact of carbon molecules in liquid water with hot rocks and minerals. We here review the environmental conditions of the early Earth, as soon as it had liquid water at its surface and was habitable. Basing our approach to life as a “cosmic phenomenon” (de Duve 1995), i.e. a chemical continuum, we briefly address the various hypotheses for the origin of life, noting their relevance with respect to early environmental conditions. It appears that hydrothermal environments were important in this respect. We continue with the record of early life noting that, by 3.5 Ga, when the sedimentary environment started being well-preserved, anaerobic life forms had colonised all habitable microenvironments from the sea floor to exposed beach environments and, possibly, in the photic planktonic zone of the sea. Life on Earth had also evolved to the relatively sophisticated stage of anoxygenic photosynthesis. We conclude with an evaluation of the potential for habitability and colonisation of other planets and satellites in the Solar System, noting that the most common life forms in the Solar System and probably in the Universe would be similar to terrestrial chemotrophs whose carbon source is either reduced carbon or CO2 dissolved in water and whose energy would be sourced from oxidized carbon, H2, or other transition elements.  相似文献   
184.
Despite the tremendous progress that has been made since the publication of the Venus II book in 1997, many fundamental questions remain concerning Venus’ history, evolution and current geologic and atmospheric processes. The international science community has taken several approaches to prioritizing these questions, either through formal processes like the Planetary Decadal Survey in the United States and the Cosmic Vision in Europe, or informally through science definition teams utilized by Japan, Russia, and India. These questions are left to future investigators to address through a broad range of research approaches that include Earth-based observations, laboratory and modeling studies that are based on existing data, and new space flight missions. Many of the highest priority questions for Venus can be answered with new measurements acquired by orbiting or in situ missions that use current technologies, and several plausible implementation concepts have been studied and proposed for flight. However, observations needed to address some science questions pose substantial technological challenges, for example, long term survival on the surface of Venus and missions that require surface or controlled aerial mobility. Missions enabled by investments in these technologies will open the door to completely new ways of exploring Venus to provide unique insights into Venus’s past and the processes at work today.  相似文献   
185.
The InSight mission to Mars is well underway and will be the first mission to acquire seismic data from a planet other than Earth. In order to maximise the science return of the InSight data, a multifaceted approach will be needed that seeks to investigate the seismic data from a series of different frequency windows, including body waves, surface waves, and normal modes. Here, we present a methodology based on globally-averaged models that employs the long-period information encoded in the seismic data by looking for fundamental-mode spheroidal oscillations. From a preliminary analysis of the expected signal-to-noise ratio, we find that normal modes should be detectable during nighttime in the frequency range 5–15 mHz. For improved picking of (fundamental) normal modes, we show first that those are equally spaced between 5–15 mHz and then show how this spectral spacing, obtained through autocorrelation of the Fourier-transformed time series can be further employed to select normal mode peaks more consistently. Based on this set of normal-mode spectral frequencies, we proceed to show how this data set can be inverted for globally-averaged models of interior structure (to a depth of \(\sim 250~\mbox{km}\)), while simultaneously using the resultant synthetically-approximated normal mode peaks to verify the initial peak selection. This procedure can be applied iteratively to produce a “cleaned-up” set of spectral peaks that are ultimately inverted for a “final” interior-structure model. To investigate the effect of three-dimensional (3D) structure on normal mode spectra, we constructed a 3D model of Mars that includes variations in surface and Moho topography and lateral variations in mantle structure and employed this model to compute full 3D waveforms. The resultant time series are converted to spectra and the inter-station variation hereof is compared to the variation in spectra computed using different 1D models. The comparison shows that 3D effects are less significant than the variation incurred by the difference in radial models, which suggests that our 1D approach represents an adequate approximation of the global average structure of Mars.  相似文献   
186.
Four decades ago, the firm detection of an Fe-K emission feature in the X-ray spectrum of the Perseus cluster revealed the presence of iron in its hot intracluster medium (ICM). With more advanced missions successfully launched over the last 20 years, this discovery has been extended to many other metals and to the hot atmospheres of many other galaxy clusters, groups, and giant elliptical galaxies, as evidence that the elemental bricks of life—synthesized by stars and supernovae—are also found at the largest scales of the Universe. Because the ICM, emitting in X-rays, is in collisional ionisation equilibrium, its elemental abundances can in principle be accurately measured. These abundance measurements, in turn, are valuable to constrain the physics and environmental conditions of the Type Ia and core-collapse supernovae that exploded and enriched the ICM over the entire cluster volume. On the other hand, the spatial distribution of metals across the ICM constitutes a remarkable signature of the chemical history and evolution of clusters, groups, and ellipticals. Here, we summarise the most significant achievements in measuring elemental abundances in the ICM, from the very first attempts up to the era of XMM-Newton, Chandra, and Suzaku and the unprecedented results obtained by Hitomi. We also discuss the current systematic limitations of these measurements and how the future missions XRISM and Athena will further improve our current knowledge of the ICM enrichment.  相似文献   
187.
The dynamics of detumbling a randomly spinning spacecraft using externally mounted, movable telescoping appendages are studied both analytically and numerically. Two types of telescoping appendages are considered: (a) where an end mass is mounted at the end of an (assumed) massless boom; and (b) where the appendage is assumed to consist of a uniformly distributed homogeneous mass throughout its length. From an application of Lyapunov's second method, boom extension maneuvers can be determined to approach either of two desired final states: close to a zero inertial angular velocity state and a final spin rate about only one of the principal axes. Recovery dynamics are evaluated analytically for the case of symmetrical deployment. Numerical examination of other asymmetrical cases verifies the practicality of using movable appendages to recover a randomly tumbling spacecraft.  相似文献   
188.
Astronomical infrared spectra are used to confirm the existence of complex organic molecules produced by ultraviolet photoprocessing of interstellar grain mantles. This material is shown to be the major component of the interstellar grains between the sun and the galactic center and, by inference, constitutes more than 10 million solar masses — or close to one part in a thousand of the entire mass of the milky way galaxy. It may be demonstrated that the primitive chemistry of the earth's surface was dominated by these extraterrestrial molecules after aggregated into comets if the rate of comet impacts with the earth was comparable with that required to account for the extinction of species over the past 300 million years.

Ultraviolet irradiation of bacterial spores has been studied for the first time under simulated interstellar conditions. The inactivation time predicted for the less dense regions of space is at most several hundred years. Within molecukar clouds it is shown on theoretical and experimental grounds that this t the estimated cloud. However survival of spores during their initial exposure to the solar ultraviolet presents a problem for panspermia because it requires that in the process of ejection from the earth's surface they must be enclosed within a cocoon (or mantle) of ultraviolet absorbing material of 0.6 μm thickness. Thus, although panspermia can not be rejected on the basis of lack of interstellar survival there may remain insurmountable obstacles to its occuring because of the very special protective shield requirements during ejection from its planetary source.  相似文献   

189.
The “VIS-channel” (the channel is sensitive between about .4 and 1.1 μm wavelength) of the European geostationary satellite Meteosat-2 is calibrated by the method of “vicarious calibration by means of calculated radiances”. The calibration constant, which connects the 6-bit-counts of the VIS-channel of the Meteosat-2 with the corresponding “effective radiances” is determined to be cSAT = 2.3 W·m?2·sr?1/count with an accuracy of ± 10% (preliminary values). The calibration constant is valid for “gain 0” and the period until October 1981. The result means, that the VIS-channel of Meteosat-2 at the beginning of its lifetime is about 15% more sensitive than that of Meteosat-1 was at its end.  相似文献   
190.
Kabana  Sonja  Minkowski  Peter 《Space Science Reviews》2002,100(1-4):175-192
The structure of a spherically symmetric stable dark `star' is discussed, at zero temperature, containing 1) a core of quarks in the deconfined phase and antileptons 2) a shell of hadrons in particular n, p, and and leptons or antileptons and 3) a shell of hydrogen in the superfluid phase. If the superfluid hydrogen phase goes over into the electromagnetic plasma phase at densities well below one atom (10 fm)3, as is usually assumed, the hydrogen shell is insignificant for the mass and the radius of the `star'. These quantities are then determined approximatively: mass = 1.8 solar masses, radius = 9.2 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号