首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   0篇
航空   147篇
航天技术   1篇
航天   20篇
  2018年   66篇
  2017年   37篇
  2016年   3篇
  2015年   3篇
  2013年   3篇
  2012年   2篇
  2011年   15篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2005年   3篇
  2004年   3篇
  2001年   4篇
  2000年   3篇
  1993年   4篇
  1992年   2篇
  1986年   1篇
  1985年   1篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
21.
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in this phase largely reside in the electromagnetic field, not in the observable plasma.  相似文献   
22.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   
23.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   
24.
Proton Events and X-ray Flares in the Last Three Solar Cycles   总被引:3,自引:0,他引:3  
A database joining the available information about proton enhancements near the Earth and their possible solar sources is organized on the basis of proton measurements of the GOES and IMP-8 satellites, the data of neutron monitors, and GOES X-ray measurements. One thousand one hundred and forty-four proton events with energy > 10 MeV have been selected in the period from 1975 to 2003. More than a half of these events can be reliably related to X-ray solar flares. A statistical analysis shows the probability of observing solar protons near the Earth and their maximum flux value to be strongly dependent on the importance of a flare and its heliolongitude. Proton events are recorded after all suitably located (western) flares with X-ray importance > X5. The heliolongitude of a flare predetermines the character of the time profile of proton events in many respects. The relationship of proton events with the other characteristics of flares is established. The flares associated with proton enhancements are characterized by longer duration, slower rise to the X-ray maximum, smaller temperature, and larger length of the X-ray loops.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 171–185.Original Russian Text Copyright © 2005 by Belov, Garcia, Kurt, Mavromichalaki.  相似文献   
25.
The low latitude ionosphere is strongly affected by several highly variable electrodynamic processes. Over the last two decades ground-based and satellite measurements and global numerical models have been extensively used to study the longitude-dependent climatology of low latitude electric fields and currents. These electrodynamic processes and their ionospheric effects exhibit large ranges of temporal and spatial variations during both geomagnetic quiet and disturbed conditions. Numerous recent studies have investigated the short term response of equatorial electric fields and currents to lower atmospheric transport processes and solar wind-magnetosphere driving mechanisms. This includes the large electric field and current perturbations associated with arctic sudden stratospheric warming events during geomagnetic quiet times and highly variable storm time prompt penetration and ionospheric disturbance dynamo effects. In this review, we initially describe recent experimental and numerical modeling results of the global climatology and short term variability of quiet time low latitude electrodynamic plasma drifts. Then, we examine the present understanding of equatorial electric field and current perturbation fields during periods of enhanced geomagnetic activity.  相似文献   
26.
The coupling between the ionised plasma and the neutral thermospheric particles plays an important role for the dynamics of the upper atmosphere. Significant progress in understanding the related processes has been achieved thanks to the availability of continuous accurate measurements of thermospheric parameters like mass density and wind by high resolution accelerometers on board the satellites CHAMP and GRACE. Here we present some examples of ionosphere-thermosphere coupling where CHAMP observations contributed considerably to their interpretation. We start with the derived properties of the thermosphere at altitudes around 400 km. A new aspect is the significant control of the geomagnetic field geometry on thermospheric features. Phenomena discussed in some depths are the equatorial mass density anomaly, the cusp-related mass density enhancement and the thermospheric response to magnetospheric substorms. Here we consider both the effect on the density and on the wind. A?long predicted process is the wind-driven ionospheric F region dynamo. The high-resolution magnetic field measurements of CHAMP enabled for the first time a systematic study of that phenomenon considering longitudinal, local time, seasonal and solar flux dependences. Some open issues that require further investigations are mentioned at the end.  相似文献   
27.
Solar energetic particles (SEPs) provide a sample of the Sun from which solar composition may be determined. Using high-resolution measurements from the Solar Isotope Spectrometer (SIS) onboard NASA’s Advanced Composition Explorer (ACE) spacecraft, we have studied the isotopic composition of SEPs at energies ≥20 MeV/nucleon in large SEP events. We present SEP isotope measurements of C, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni made in 49 large events from late 1997 to the present. The isotopic composition is highly variable from one SEP event to another due to variations in seed particle composition or due to mass fractionation that occurs during the acceleration and/or transport of these particles. We show that various isotopic and elemental enhancements are correlated with each other, discuss the empirical corrections used to account for the compositional variability, and obtain estimated solar isotopic abundances. We compare the solar values and their uncertainties inferred from SEPs with solar wind and other solar system abundances and find generally good agreement.  相似文献   
28.
Two methods of calculating the resultant vector and principal moment of light pressure forces, having an effect on a spacecraft with a composite solar sail, are compared. The first method is based on analytical formulas obtained without regard to shading of some parts of the sail by others. The second method uses a detailed geometrical model of the sail, which allows one to take such shading into account. Some part of photons falling on a sail is supposed to be reflected from it in a mirror manner, while the others are completely absorbed. The range of variation of sail orientation parameters with respect to incident solar light streams, where the first method turns out to be accurate enough, is found.  相似文献   
29.
The space situational awareness program of the European Space Agency   总被引:1,自引:0,他引:1  
The organization principles of constructing the European system of warning about dangerous situations in the outer space are considered in the paper.  相似文献   
30.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号