首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7990篇
  免费   29篇
  国内免费   26篇
航空   3617篇
航天技术   2920篇
综合类   199篇
航天   1309篇
  2021年   67篇
  2019年   56篇
  2018年   155篇
  2017年   100篇
  2016年   89篇
  2014年   170篇
  2013年   219篇
  2012年   207篇
  2011年   297篇
  2010年   194篇
  2009年   346篇
  2008年   395篇
  2007年   227篇
  2006年   192篇
  2005年   232篇
  2004年   231篇
  2003年   260篇
  2002年   271篇
  2001年   311篇
  2000年   166篇
  1999年   200篇
  1998年   223篇
  1997年   170篇
  1996年   227篇
  1995年   265篇
  1994年   241篇
  1993年   117篇
  1992年   197篇
  1991年   75篇
  1990年   73篇
  1989年   173篇
  1988年   60篇
  1987年   63篇
  1986年   80篇
  1985年   248篇
  1984年   202篇
  1983年   146篇
  1982年   183篇
  1981年   224篇
  1980年   65篇
  1979年   42篇
  1978年   53篇
  1977年   52篇
  1975年   43篇
  1974年   57篇
  1973年   39篇
  1972年   40篇
  1971年   39篇
  1970年   42篇
  1969年   44篇
排序方式: 共有8045条查询结果,搜索用时 15 毫秒
661.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   
662.
    
The primary scientific objective of the ROSAT mission is to perform the first all sky survey with an imaging X-ray telescope leading to an improvement in sensitivity by several orders of magnitude compared with previous surveys. Consequently a large number of new sources (> 105) will be discovered and located with an accuracy of 1 arcmin. After completion of the survey which will take about half a year the instrument will be used for detailed observations of selected targets.The X-ray telescope consists of a fourfold nested Wolter type I mirror system with 80 cm aperture and 240 cm focal length, and three focal plane detectors. In the baseline version these will be imaging proportional counters (0.1 – 2 keV) providing a field of view of 20 × 20.  相似文献   
663.
    
A Gaussian sum estimation algorithm has previously been developed to deal with noise processes that are non-Gaussian. Inherent in this algorithm is a serious growing memory problem that causes the number of terms in the Gaussian sum to increase exponentially at each iteration. A modified Gaussian sum estimation algorithm using an adaptive filter is developed that avoids the growing memory problem of the previous algorithm while providing effective state estimation. The adaptive filter is comprised of a fixed set of estimators operating in parallel with each individual estimate possessing its own corresponding weighting term. A simulation example illustrates the new non-Gaussian estimation technique  相似文献   
664.
With major emphasis on simulation, a university laboratory telerobotics facility permits problems to be approached by groups of graduate students. Helmet-mounded displays provide realism; the slaving of the display to the human operator's viewpoint gives a sense of `telepresence' that may be useful for prolonged tasks. Using top-down 3-D model control of distant images allows distant images to be reduced to a few parameters to update the model used for display to the human operator in a preview model to circumvent, in part, the communication delay. Also, the model can be used as a format for supervisory control and permit short-term local autonomous operations. Image processing algorithms can be made simpler and faster without trying to construct sensible images from the bottom. Control studies of telerobots lead to preferential manual control modes and, in this university environment, to basic paradigms for human motion and thence, perhaps, to redesign of robotic control, trajectory path planning, and rehabilitation prosthetics. Speculation as to future industrial drives for this telerobotic field suggests efficient roles for government agencies such as NASA  相似文献   
665.
    
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   
666.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   
667.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
668.
  总被引:2,自引:0,他引:2  
A parallel adaptive mesh refinement (AMR) scheme is described for solving the governing equations of ideal magnetohydrodynamics (MHD) in three space dimensions. This solution algorithm makes use of modern finite-volume numerical methodology to provide a combination of high solution accuracy and computational robustness. Efficient and scalable implementations of the method have been developed for massively parallel computer architectures and high performance achieved. Numerical results are discussed for a simplified model of the initiation and evolution of coronal mass ejections (CMEs) in the inner heliosphere. The results demonstrate the potential of this numerical tool for enhancing our understanding of coronal and solar wind plasma processes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
669.
The main goal of the paper is to demonstrate the presence of chaotic trajectories in the gaseous disk of a real spiral galaxy. As an example we have chosen NGC 3631. First, we show the stationarity of the 3-D velocity field restored from the observed line-of-sight velocity field of the gaseous disk. That allows to analyse behaviour of the trajectories of the fluid particles (gas clouds) in the disk, calculating the corresponding observed streamlines. We estimate the Lyapunov characteristic numbers using their independence of the metrics and show the existence of chaotic trajectories outside the vortices which are present in the velocity field, and in the vicinity of the saddle point. Related spectra of the stretching numbers for some trajectories are also calculated.  相似文献   
670.
Jurewicz  A.J.G.  Burnett  D.S.  Wiens  R.C.  Friedmann  T.A.  Hays  C.C.  Hohlfelder  R.J.  Nishiizumi  K.  Stone  J.A.  Woolum  D.S.  Becker  R.  Butterworth  A.L.  Campbell  A.J.  Ebihara  M.  Franchi  I.A.  Heber  V.  Hohenberg  C.M.  Humayun  M.  McKeegan  K.D.  McNamara  K.  Meshik  A.  Pepin  R.O.  Schlutter  D.  Wieler  R. 《Space Science Reviews》2003,105(3-4):535-560
Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (‘collector arrays’), with some as targets in the focal spot of an electrostatic mirror (the ‘concentrator’). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号