We demonstrate that it is possible to express each component of the displacement vector for the interior point of the finite element (FE) through all components of nodal unknowns in curvilinear coordinates. The effectiveness of the valid technique of vector approximation for displacement fields has been verified on an example. 相似文献
As the title suggests, the purpose of this chapter is to review the current status of numerical simulations of black hole accretion disks. This chapter focuses exclusively on global simulations of the accretion process within a few tens of gravitational radii of the black hole. Most of the simulations discussed are performed using general relativistic magnetohydrodynamic (MHD) schemes, although some mention is made of Newtonian radiation MHD simulations and smoothed particle hydrodynamics. The goal is to convey some of the exciting work that has been going on in the past few years and provide some speculation on future directions. 相似文献
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation
of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the
data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The
poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated
with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are
generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that
the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison
of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase
shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm
development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic
plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for
monitoring of substorm intensity in terms of the magnetic flux and energy dissipation. 相似文献
Electric power anomalies or disturbances can disrupt the normal operation of equipment, accelerate aging, or even cause outright failures thus resulting in increased costs of maintenance and reduced system reliability. Past research on the effects caused by power anomalies has been mostly focused on industrial, commercial, or residential systems, or on power distribution equipment. A literature survey reveals that there is no comprehensive review related to low-voltage (LV) power systems and utilization equipment applicable to military combat vehicles, such as aircraft and ships. This paper summarizes the results of a new literature survey that focused on the causes, effects, and mitigation methods for power anomalies typical of LV mobile power systems. Electric power anomaly cost data collected from the literature are also presented, from which the costs of anomalies to the national defense are estimated using some simple rationales. 相似文献
Within the analysis of space geodetic observations, errors of the applied subdaily Earth rotation model can induce systematic effects in different estimated parameters. In this paper, we focus on the impact of the subdaily Universal Time (UT1) model on the celestial pole offsets (CPO) estimated from very long baseline interferometry (VLBI) observations. We provide a mechanism that describes the error propagation from the subdaily UT1 into the daily CPO.In typical 24-h VLBI sessions the observed quasars are well distributed over the sky. But the observations, if looked at from the Earth-fixed frame, are not homogeneously distributed. The amount of observations performed in different terrestrial directions shows an irregularity which can be roughly compared to the case where the observations are collected in only one Earth-fixed direction. This peculiarity leads to artefacts in VLBI solutions, producing a correlation between the subdaily variations in UT1 and the position of the celestial pole. As a result errors in diurnal terms of the subdaily UT1 model are partly compensated by the estimated CPO. We compute for each 24-h VLBI session from 1990 until 2011 the theoretical response of the CPO to an error in the subdaily UT1 by setting up a least-squares adjustment model and using as input the coordinates of the observed quasars and observation epochs. Then real observed response of the estimated CPO derived from the VLBI session solutions is compared to the predicted one. A very good agreement between the CPO values estimated from VLBI and the predicted values was achieved. The presented model of error propagation from the subdaily UT1 into the daily CPO allows to predict and explain the behaviour of CPO estimates of VLBI solutions computed with different subdaily Earth rotation models, what can be helpful for testing the accuracy of different subdaily tidal models. 相似文献
The drop tube which will be available in the “Centre d'Etudes Nucléaires de Grenoble” is described. Its main features are the following: - Dimensions : Drop height : 47.1 m Drop time : 3.1 s Tube inside diameter : 0.2 m - Experimental atmosphere : 1 Ultra-vacuum : 10−6 to 10−7 Pa - Residual gravity level : 10−8 to 10−9 g according to the vacuum level and drop diameter.
This facility is unique insofar as it enables experiments to be performed under ultra-vacuum conditions which, by delaying the formation of surface oxides, should contribute to improving maximum undercooling values.
The techniques used for obtaining small metallic drops (0.5 to 3 mm) are described. The availability of this instrument for the scientific community is also foreseen by the french sponsoring organizations (CEA, CNES, CNRS) ; some practicle informations will be given to potential experimenters. 相似文献
Modelisation and solution of heat and mass transfer problems relevant for material processing are generally hard to be handled, as they often involve 3D unsteady flows, viscous mixtures, phase changes, moving liquid-solid fronts, deforming liquid-gas interfaces, etc.… For space applications, material processing benefits of reduced buoyancy convection but can be faced to a strongly increased complexity due to variable g, mainly in manned flight.
Computational techniques used to analyse fluid motions in material processing, accounting for free surface, crystallization front and bulk convection in melt, are reviewed with emphasis to directional crystallization. Hydrodynamics stability and bifurcation analysis are shown to be useful complementary tools for correlating data, and for a better understanding of the physical laws. This last point will be illustrated in the case of the onset of oscillations in metallic melts. 相似文献
The paper is concerned with the numerical simulation and the analysis of some kinds of flow regimes which can develop in Bridgman and Czochralski systems for material processings. The flows in the liquid phase are investigated considering two-dimensional and axisymmetric models. The time-dependent regimes were studied for a zero-Prandtl-number fluid layer confined inside a two-dimensional cavity of aspect ratio (length-to-height) A=4, involving a stress-free upper surface and submitted to a horizontal temperature gradient. The range of Grashof number was varied up to the conditions at which the flow goes from oscillatory to chaotic type behaviours. The combined influence of the temperature gradients and of the rotations of the crucible and of the seed/crystal was investigated for a Czochralski model. The axisymmetric regimes were studied for a Prm=0.015 liquid melt confined inside a cylindrical crucible of aspect ratio (height-to-radius) Am=2, and coupled to a viscous encapsulant liquid layer (10<Pre<1200) of aspect ratio Ae=0.5. A number of steady and (transient) time-dependent flow patterns are identified. 相似文献
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. 相似文献