首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   9篇
  国内免费   6篇
航空   91篇
航天技术   30篇
综合类   63篇
航天   140篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2012年   11篇
  2011年   16篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   12篇
  2006年   7篇
  2005年   12篇
  2004年   8篇
  2003年   12篇
  2002年   8篇
  2001年   17篇
  2000年   1篇
  1999年   4篇
  1998年   11篇
  1997年   7篇
  1996年   12篇
  1995年   12篇
  1994年   42篇
  1993年   10篇
  1992年   3篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   13篇
  1984年   10篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1978年   1篇
  1975年   2篇
  1968年   1篇
排序方式: 共有324条查询结果,搜索用时 46 毫秒
41.
The determination of the microbial load of a spacecraft en route to interesting extraterrestrial environments is mandatory and currently based on the culturable, heat-shock-surviving portion of microbial contaminants. Our study compared these classical bioburden measurements as required by NASA's and ESA's guidelines for the microbial examination of flight hardware, with molecular analysis methods (16S rRNA gene cloning and quantitative PCR) to further develop our understanding of the diversity and abundance of the microbial communities of spacecraft-associated clean rooms. Three samplings of the Herschel Space Observatory and its surrounding clean rooms were performed in two different European facilities. Molecular analyses detected a broad diversity of microbes typically found in the human microbiome with three bacterial genera (Staphylococcus, Propionibacterium, and Brevundimonas) common to all three locations. Bioburden measurements revealed a low, but heterogeneous, abundance of spore-forming and other heat-resistant microorganisms. Total cell numbers estimated by quantitative real-time PCR were typically 3 orders of magnitude greater than those determined by viable counts, which indicates a tendency for traditional methods to underestimate the extent of clean room bioburden. Furthermore, the molecular methods allowed the detection of a much broader diversity than traditional culture-based methods.  相似文献   
42.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   
43.
Abstract Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10?μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission. Key Words: Astrobiology-Habitability-Enceladus-Biosignatures. Astrobiology 12, 730-742.  相似文献   
44.
45.
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.  相似文献   
46.
INTRODUCTIONIn general,nitrogen launching system[1,2 ] iscomprised of nitrogen cylinder,launching mecha-nism,framework and electrical system,withcompressed Nitrogen as launching energy re-sources.A physical and mathematical model isdeveloped for describing the relations betweenthe detached time and the force,volume,pres-sure,flow,displacement,velocity,acceleration ofnitrogen cylinder and launching mechanism.Thekey technique of NL S is to control detached pa-rameters by changing the press…  相似文献   
47.
利用射电星校准13m测控天线指向误差及测试结果   总被引:1,自引:0,他引:1  
分析了利用射电星校准13m测控天线指向精度的方法,综合利用射电星和光标测试数据,采用简化的天线误差模型,计算出天线误差系数,经过误差修正后天线的指向精度达到设计要求。  相似文献   
48.
GPS中频信号是分析研究GPS信号特点和捕获跟踪方法的关键环节,高动态旋转条件下得到GPS中频信号十分困难,需要利用仿真手段模拟生成。在综合分析卫星仰角、GPS天线增益以及空间载体旋转对GPS卫星可见性和GPS中频信号影响的基础上,导出了高动态旋转条件下GPS中频数字信号模型,提出了载体旋转条件下GPS中频信号的生成方法,并利用Matlab平台模拟生成了高动态旋转条件下GPS中频信号。该方法可用于高动态旋转载体的GPS轨迹测量方案设计验证,具有一定的理论价值和工程意义。  相似文献   
49.
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.  相似文献   
50.
利用MMS观测数据,对磁层顶通量绳内离子惯性尺度(di)的结构进行分析研究.结果发现,许多不同尺度(约1di至数十di)的通量绳内都存在具有di尺度的电流 j m,其方向在磁层顶局地坐标系的-M方向,即与磁层顶查普曼-费拉罗电流同向,由电子在+M方向的运动( v em)携带.这些电流结构具有以下特征:磁鞘与磁层成分混合,磁场为开放形态;离子去磁化,电子与磁场冻结;N方向(即垂直于磁层顶电流片方向)的电场 E n显著增大,幅度达到约20mV·m-1,并伴有明显的尖峰状起伏,该增强和尖峰状起伏的电场对应于霍尔电场.分析表明,电流、电子与离子运动的偏离以及霍尔电场之间遵从广义欧姆定律,三者密切关联.进一步对磁层顶磁重联的探测数据进行分析发现,在很多重联区内也存在与通量绳内相似的结构,其尺度约为di量级,其中霍尔电场 E N、电流 j M和电子速度 v eM均与通量绳内对应物理量的方向相同且幅度相近.基于上述观测事实,采用经典FTE通量绳模型,对通量绳内电流、电子运动和霍尔电场的起源进行了初步探讨,认为其来源于磁层顶无碰撞磁重联区内的相应结构,并且后者在离子尺度通量绳的形成过程中起到重要作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号