The results of numerical simulation for the diffusion processes “powder gases-steel” occurring in the barrel of a quick-firing small-caliber gun are presented. 相似文献
The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) will answer important questions posed by the mission’s
main objectives. After Giotto, this will be the first time the volatile part of a comet will be analyzed in situ. This is
a very important investigation, as comets, in contrast to meteorites, have maintained most of the volatiles of the solar nebula.
To accomplish the very demanding objectives through all the different phases of the comet’s activity, ROSINA has unprecedented
capabilities including very wide mass range (1 to >300 amu), very high mass resolution (m/Δ m > 3000, i.e. the ability to resolve CO from N2 and 13C from 12CH), very wide dynamic range and high sensitivity, as well as the ability to determine cometary gas velocities, and temperature.
ROSINA consists of two mass spectrometers for neutrals and primary ions with complementary capabilities and a pressure sensor.
To ensure that absolute gas densities can be determined, each mass spectrometer carries a reservoir of a calibrated gas mixture
allowing in-flight calibration. Furthermore, identical flight-spares of all three sensors will serve for detailed analysis
of all relevant parameters, in particular the sensitivities for complex organic molecules and their fragmentation patterns
in our electron bombardment ion sources. 相似文献
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material
accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations
indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses
of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely
distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations.
Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at
different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including
microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere
that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin
on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field
and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the
analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions. 相似文献
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group(RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation(EDS),probability density function(PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model. 相似文献
The EURECA platform offers unique characteristics for microgravity research: a very low level micro-gravity spectrum and a long operation time for recoverable experiments.
Five core facilities on board will perform an impressive number of experiments. The main purpose of the Solution Growth Facility (SGF) is growing crystals at low temperatures by using the double diffusion technique in three compartment reactors. The micro-gravity eliminates the convection in the liquid, while Marangoni convection is avoided by the absence of free surfaces. The thermal gradient in the buffer zone is better than 0.01°C/cm. Turbulence is eliminated by control of the valve rate and by a pressure compensation system. All surfaces are coated with Halar. The diffusion rate can be controlled by the use of filters. The SGF contains three independently controlled reactors.
A forth reactor contains an experiment aiming at measuring the Soret coefficient of twenty binary organic mixtures and aqueous electrolyte solutions. 相似文献
Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load. 相似文献
Aboard the orbital stations, "Salyut-7" and "Mir", investigations on the peculiarities of moisture transfer in capillary-porous bodies (CPB; that is, soil substitutes) in microgravity were conducted by the authors with a specially designed device and an original method. Water distribution in CPB-perlite (fractions 1.5... 2.5 mm) was studied, and theoretical dependances for linear capillary impregnation of CPB were determined. 相似文献
One of the main guidelines for future X-ray astronomy projects like, e.g., XEUS (ESA) and Generation-X (NASA) is to utilize grazing-incidence focusing optics with extremely large telescopes (several tens of m2 at 1 keV), with a dramatic increase in collecting area of about two order of magnitude compared to the current X-ray telescopes. In order to avoid the problem of the source's confusion limit at low fluxes, the angular resolution required for these optics should be superb (a few arcsec at most). The enormous mirror dimensions together with the high imaging performances give rise to a number of manufacturing problems. It is basically impossible to realize so large mirrors from closed Wolter I shells which benefit from high mechanical stiffness. Instead the mirrors need to be formed as rectangular segments and a series of them will be assembled in a petal. Taking into account the realistic load capabilities of space launchers, to be able to put in orbit so large mirror modules the mass/geometric-area ratio of the optics should be very small. Finally, with a so large optics mass it would be very difficult to provide the electric power for an optics thermal active control, able to maintain the mirrors at the usual temperature of 20 °C. Therefore, very likely, the optics will instead operate in extreme thermal conditions, with the mirror temperature oscillating between −30 and −40 °C, that tends to exclude the epoxy replication approach (the mismatch between the CTE of the substrate and that of the resin would cause prohibitively large deformations of the mirror surface profiles). From these considerations light weight materials with high thermal–mechanical properties such as glass or ceramics become attractive to realize the mirrors of future Xray telescopes. In this paper, we will discuss a segments manufacturing method based on BorofloatTM glass. A series of finite element analysis concerning different aspects of the production, testing and integration of the optics are also presented as well. 相似文献
Periodicity in occurrence of magnetic disturbances in polar cap and auroral zone under conditions of steady and powerful solar wind influence on the magnetosphere is analyzed on the example of 9 storm events with distinctly expressed sawtooth substorms (N = 48). Relationships between the polar cap magnetic activity (PC-index), magnetic disturbances in the auroral zone (AL-index) and value of the ring current asymmetry (ASYM index) were examined within the intervals of the PC growth phase and the PC decline phase inherent to each substorm. It is shown that the substorm sudden onsets are always preceded by the PC growth and that the substorm development does not affect the PC growth rate. On achieving the disturbance maximum, the PC and AL indices are simultaneously fall down to the level preceding the substorm, so that the higher the substorm intensity, the larger is the AL and PC drop in the decline phase. The ASYM index increases and decreases in conformity with the PC and AL behavior, the correlation between ASYM and PC being better than between ASYM and AL. Level of the solar wind energy input into the magnetosphere determines periodicity and intensity of disturbances: the higher the coupling function EKL, the higher is substorm intensity and shorter is substorm length. Taking into account the permanently high level of auroral activity and inconsistency of aurora behavior and magnetic onsets during sawtooth substorms, the conclusion is made that auroral ionosphere conductivity is typically high and ensures an extremely high intensity of field-aligned currents in R1 FAC system. The periodicity of sawtooth substorms is determined by recurrent depletions and restorations of R1 currents, which are responsible for coordinated variations of magnetic activity in the polar cap and auroral zone. 相似文献