首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2218篇
  免费   3篇
  国内免费   3篇
航空   1079篇
航天技术   419篇
综合类   4篇
航天   722篇
  2022年   5篇
  2021年   28篇
  2020年   5篇
  2019年   13篇
  2018年   172篇
  2017年   152篇
  2016年   50篇
  2015年   34篇
  2014年   42篇
  2013年   59篇
  2012年   85篇
  2011年   179篇
  2010年   161篇
  2009年   201篇
  2008年   166篇
  2007年   171篇
  2006年   29篇
  2005年   88篇
  2004年   44篇
  2003年   34篇
  2002年   25篇
  2001年   44篇
  2000年   25篇
  1999年   13篇
  1998年   33篇
  1997年   12篇
  1996年   26篇
  1995年   21篇
  1994年   26篇
  1993年   17篇
  1992年   22篇
  1991年   5篇
  1989年   14篇
  1988年   7篇
  1987年   12篇
  1986年   5篇
  1985年   31篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   20篇
  1980年   7篇
  1979年   6篇
  1978年   5篇
  1975年   7篇
  1974年   10篇
  1972年   9篇
  1968年   10篇
  1967年   13篇
  1966年   10篇
排序方式: 共有2224条查询结果,搜索用时 296 毫秒
601.
602.
The technical parameters of a holographic setup and an optical scheme for registration of holograms are described. The holographic interferograms of vibration modes for the GTE turbine and compressor blades vibrating at resonance frequencies are presented.  相似文献   
603.
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities.  相似文献   
604.
Measurement association and initial orbit determination is a fundamental task when building up a database of space objects. This paper proposes an efficient and robust method to determine the orbit using the available information of two tracklets, i.e. their line-of-sights and their derivatives. The approach works with a boundary-value formulation to represent hypothesized orbital states and uses an optimization scheme to find the best fitting orbits. The method is assessed and compared to an initial-value formulation using a measurement set taken by the Zimmerwald Small Aperture Robotic Telescope of the Astronomical Institute at the University of Bern. False associations of closely spaced objects on similar orbits cannot be completely eliminated due to the short duration of the measurement arcs. However, the presented approach uses the available information optimally and the overall association performance and robustness is very promising. The boundary-value optimization takes only around 2% of computational time when compared to optimization approaches using an initial-value formulation. The full potential of the method in terms of run-time is additionally illustrated by comparing it to other published association methods.  相似文献   
605.
Data from the archive of the International GNSS Services (IGS) were used to study the seasonal variations of Total Electron Content (TEC) over three stations located at different latitudes in the southern hemisphere during the geomagnetic storms of 11 January, 6 April, 8 June, and 13 October 2000, representing storms that occurred in summer, autumn equinox, winter and spring equinox, respectively. The percentage TEC deviation with respect to reference values differs substantially from season to season. A strong seasonal anomaly and clear equinoctial asymmetry in TEC response to the storms were observed. Weak and short-lived positive TEC deviations as well as strong and long-lasting negative trends were observed in summer storm during the main and recovery phases respectively over the high and low latitudes whereas in winter storm, the highest positive TEC deviations was recorded during the main phase over the entire latitudes. TEC enhancement dominated all the stations during the autumn (March) equinox storm while TEC depletion was majorly observed during the spring (September) equinox. All these variations find their explanations in the thermospheric composition change and circulation. Future work with direct or modeled measurement of atomic Oxygen to molecular Nitrogen ratio (O/N2), large number of storms and other possible factors such as variations in storm’s intensity and local time dependence of the storm onset is expected to validate the observations in this study.  相似文献   
606.
This paper presents a FORTRAN computer program. The program as code will be used for lunar parameter inversions based on gravity/topography admittance. This will be done by assuming that the lunar lithosphere is modeled as a thin elastic spherical shell. The parameters discussed here include; load ratio, crustal thickness, subsurface load depth, crustal density and elastic lithosphere thickness. The admittance of the best-fitting model can be found through automatically adjusting misfits between one theoretical admittance and an observed one. The results in this paper indicate that this research’s theoretical model is reasonable for exploring the best-fitting parameters. In addition, this code is not only able to automatically and simultaneously calculate the global optimum solution of the parameters studied, but also performs well in computational speed. The code can be easily modified to include more parameter inversions; such as the inversion for subsurface density anomaly and the case of considering infilling material in some lunar mare basins.  相似文献   
607.
Due to high relative velocities, collisions of spacecraft in orbit with Space Debris (SD) or Micrometeoroids (MM) can lead to payload degradation, anomalies as well as failures in spacecraft operation, or even loss of mission. Flux models and impact risk assessment tools, such as MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) or ORDEM (Orbital Debris Engineering Model), and ESABASE2 or BUMPER II are used to analyse mission risk associated with these hazards. Validation of flux models is based on measured data. Currently, as most of the SD and MM objects are too small (millimeter down to micron sized) for ground-based observations (e.g. radar, optical), the only available data for model validation is based upon retrieved hardware investigations e.g. Long Duration Exposure Facility (LDEF), Hubble Space Telescope (HST), European Retrievable Carrier (EURECA). Since existing data sets are insufficient, further in-situ experimental investigation of the SD and MM populations are required. This paper provides an overview and assessment of existing and planned SD and MM impact detectors. The detection area of the described detectors is too small to adequately provide the missing data sets. Therefore an innovative detection concept is proposed that utilises existing spacecraft components for detection purposes. In general, solar panels of a spacecraft provide a large area that can be utilised for in-situ impact detection. By using this method on several spacecraft in different orbits the detection area can be increased significantly and allow the detection of SD and MM objects with diameters as low as 100 μm. The design of the detector is based on damage equations from HST and EURECA solar panels. An extensive investigation of those panels was performed by ESA and is summarized within this paper. Furthermore, an estimate of the expected sensitivity of the patented detector concept as well as examples for its implementation into large and small spacecraft are presented.  相似文献   
608.
Cosmic Research - We investigated variations on scales of 104–105 km and local spatial inhomogeneities in the density of protons Np, doubly ionized helium ions (α-particles) Nα, and...  相似文献   
609.
For spacecraft swarms, the multi-agent localization algorithm must scale well with the number of spacecraft and adapt to time-varying communication and relative sensing networks. In this paper, we present a decentralized, scalable algorithm for swarm localization, called the Decentralized Pose Estimation (DPE) algorithm. The DPE considers both communication and relative sensing graphs and defines an observable local formation. Each spacecraft jointly localizes its local subset of spacecraft using direct and communicated measurements. Since the algorithm is local, the algorithm complexity does not grow with the number of spacecraft in the swarm. As part of the DPE, we present the Swarm Reference Frame Estimation (SRFE) algorithm, a distributed consensus algorithm to co-estimate a common Local-Vertical, Local-Horizontal (LVLH) frame. The DPE combined with the SRFE provides a scalable, fully-decentralized navigation solution that can be used for swarm control and motion planning. Numerical simulations and experiments using Caltech’s robotic spacecraft simulators are presented to validate the effectiveness and scalability of the DPE algorithm.  相似文献   
610.
Ionospheric irregularities are well-known phenomena associated with ionospheric scintillation. These irregularities comprise steep electron density gradients in the equatorial F region some 1 to 2 h after sunset in regions close to the geomagnetic equator. Using the IGS network of GNSS receivers spread across the low-latitude region over the African sector, we present the monthly trends in ionospheric irregularity activity levels based on Rate of TEC Index (ROTI) during the declining phase of solar 24. The monthly trends are statistically represented by counts of the night time ROTI values exceeding a threshold of 0.4 TECU/min. A clear trend emerges on the irregularity occurrence across the African sector: during the first four months of the year, the irregularity occurrence is highly pronounced on the western side of the region. The irregularity occurrence then shifts to the eastern side during the months of May, June, July, and August. During the last four months of the year, the irregularity occurrence is again more intense on the western side of Africa than on the eastern side. The occurrence of irregularity structures on only one side of the region during a given night is an unusual feature reported here for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号