首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4180篇
  免费   6篇
  国内免费   7篇
航空   2018篇
航天技术   1206篇
综合类   11篇
航天   958篇
  2021年   37篇
  2019年   21篇
  2018年   190篇
  2017年   156篇
  2016年   78篇
  2015年   40篇
  2014年   82篇
  2013年   117篇
  2012年   122篇
  2011年   230篇
  2010年   195篇
  2009年   274篇
  2008年   263篇
  2007年   193篇
  2006年   81篇
  2005年   135篇
  2004年   92篇
  2003年   110篇
  2002年   61篇
  2001年   125篇
  2000年   63篇
  1999年   76篇
  1998年   93篇
  1997年   72篇
  1996年   81篇
  1995年   104篇
  1994年   108篇
  1993年   54篇
  1992年   65篇
  1991年   18篇
  1990年   25篇
  1989年   62篇
  1988年   37篇
  1987年   28篇
  1986年   31篇
  1985年   97篇
  1984年   85篇
  1983年   50篇
  1982年   80篇
  1981年   80篇
  1980年   21篇
  1979年   14篇
  1978年   35篇
  1977年   14篇
  1975年   29篇
  1974年   23篇
  1973年   18篇
  1972年   24篇
  1969年   14篇
  1966年   13篇
排序方式: 共有4193条查询结果,搜索用时 15 毫秒
81.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
82.
In a number of flights, cosmonauts and astronauts have experienced aggravation of their health status and general condition in the initial hours and days in a weightless environment. One of the trigger mechanisms for the onset of these unfavourable conditions at the start of space flight is a redistribution of body fluids and a blood shift towards the head. To ensure controlled hypohydration as a countermeasure to the deleterious effects of 0-g and to investigate the feasibility to control adaptation, six cosmonauts were administered lasix once a day during the first 3 days of a mission. All data of the experiment (correction test, questionnaire, hematocrit) were recorded on a special form in the logbook and transmitted to the control centre for processing. Results showed that the diuretic weakened the sensation of discomfort and improved the cosmonauts' general condition. Objective indices of the correction test indicate an increased work ability of cosmonauts. After hypohydration, circulating plasma volumes in the group were reduced by 6.8 + 1.0% on average.  相似文献   
83.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   
84.
Map-based navigation in outdoor terrain lacking man-made structures or other highly distinctive landmarks can produce severe localization problems. This paper presents an approach to navigation which implements high level geometric reasoning and matching strategies based on those used by skilled human navigators. This approach, which is demonstrated on a real example involving imagery of mountainous terrain obtained with a video camera and USGS map data, is designed to avoid many of the pitfalls occurring when an attempt is made to navigate by modeling the environment mathematically. It exploits feature attributes which cannot be easily expressed quantitatively but are central to the successful human navigation process.  相似文献   
85.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
86.
The lunar orbit is presently expanding due, we believe, to tidal friction, i.e. the attraction of the moon for the tides it raises on the rotating Earth. The Moon may therefore have been significantly closer to the Earth in the distant past, a point of great interest to those studying the lunar origin. This work presents the results of the integration of the equations which govern the rates of change of the lunar orbit elements and the angular momentum of the Earth. Results are presented for both the past and future of the Earth-Moon system.  相似文献   
87.
When discussing problems related to medical service in space flight, particular attention should be given to the specific living conditions and changes associated with space flight. In disease and injury, surgery can be provided only after conservative therapy has failed. In this context gnotobiological chambers allowing surgery in aseptic conditions seem promising. A portable set of interchangeable surgical tools should be made of light-weight alloys that can be readily sterilized. Electroanalgesia in combination with auriculoacupuncture as well as peridureal anesthesia may be used as they allow normal operations in autonomous space flight conditions. Changes in the sympatho-adrenal and kallikrein-kinin systems, as well as water-electrolyte balance, should be taken into account in developing methods and means of medical service in critical situations. Special attention should be given to the prevention and treatment of brain edema in view of weightlessness-induced cephalad fluid shifts.  相似文献   
88.
In the 25 years since the launch of the first weather satellite, meteorological observations from space have become an essential part of weather forecasting and global environmental monitoring. Beginning in the 1970s, constrained national budgets and the need for a coordinated approach to global satellite observing have caused satellite operators to pursue international cooperation to assure the continuity and compatibility of these systems. This article reviews current bilateral and multilateral cooperation and technical coordination in environmental satellite activities. It also explores the potential for alternative institutional arrangements for maintaining the continuity of environmental satellite data in the decades to come.  相似文献   
89.
An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).  相似文献   
90.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号