首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3855篇
  免费   9篇
  国内免费   6篇
航空   1478篇
航天技术   1285篇
综合类   21篇
航天   1086篇
  2022年   18篇
  2021年   52篇
  2019年   22篇
  2018年   145篇
  2017年   113篇
  2016年   120篇
  2015年   47篇
  2014年   138篇
  2013年   164篇
  2012年   143篇
  2011年   177篇
  2010年   151篇
  2009年   233篇
  2008年   227篇
  2007年   134篇
  2006年   86篇
  2005年   121篇
  2004年   110篇
  2003年   121篇
  2002年   99篇
  2001年   134篇
  2000年   52篇
  1999年   64篇
  1998年   79篇
  1997年   47篇
  1996年   61篇
  1995年   90篇
  1994年   81篇
  1993年   41篇
  1992年   57篇
  1991年   13篇
  1990年   21篇
  1989年   51篇
  1988年   16篇
  1987年   25篇
  1986年   19篇
  1985年   94篇
  1984年   72篇
  1983年   55篇
  1982年   48篇
  1981年   94篇
  1980年   27篇
  1979年   21篇
  1978年   19篇
  1977年   19篇
  1976年   17篇
  1975年   19篇
  1974年   18篇
  1972年   21篇
  1971年   13篇
排序方式: 共有3870条查询结果,搜索用时 93 毫秒
121.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere.  相似文献   
122.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   
123.
Water is the essential precondition of life in general and also for the establishment of a Martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a "frozen ocean" under the surface of Mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a Martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the Martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a Martian base.  相似文献   
124.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) Mini-Module, a Space Shuttle middeck locker payload which supports a variety of aquatic inhabitants (fish, snails, plants and bacteria) in an enclosed 8.6 L chamber, was tested for its biological stability in microgravity. The aquatic plant, Ceratophyllum demersum L., was critical for the vitality and functioning of this artificial mini-ecosystem. Its photosynthetic pigment concentrations were of interest due to their light harvesting and protective functions. "Post-flight" chlorophyll and carotenoid concentrations within Ceratophyllum apical segments were directly related to the quantities of light received in the experiments, with microgravity exposure (STS-89) failing to account for any significant deviation from ground control studies.  相似文献   
125.
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules.  相似文献   
126.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   
127.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   
128.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   
129.
The response of spores of Bacillus subtilis, cells of Deinococcus radiodurans and conidia of Aspergillus ochraceus to actual and simulated space conditions (UV in combination with long-term exposure to extremely dry conditions, including vacuum) has been studied: The following effects have been analyzed: decrease of viability, occurrence of DNA double strand breaks, formation of DNA-protein cross-links and DNA-DNA cross-links. All organisms show an increased sensitivity to UV light in extreme dryness (dry argon or vacuum) compared to an irradiation in aqueous suspension. The UV irradiation leads in all cases to a variety of DNA lesions. Very conspicuous is the occurrence of double strand breaks. Most of these double strand breaks are produced by incomplete repair of other lesions, especially base damages. The increase in DNA lesions can be correlated to the loss in viability. The specific response of the chromosomal DNA to UV irradiation in extreme dryness, however, varies from species to species and depends on the state of dehydration. The formation of DNA double strand breaks and DNA-protein cross-links prevails in the case of B. subtilis spores. In cells of Deinococcus radiodurans DNA-DNA cross-links often predominate, in conidia of Aspergillus ochraceus double strand breaks. The results obtained by direct exposure to space conditions (EURECA mission and D2 mission) largely agree with the laboratory data.  相似文献   
130.
There is important progress now in the identifications and measurements of primary (parent) molecules in the inner coma of Comet Halley. H2O, CO2 and CO are definitely in the list, CH and some complicate organic molecules are suspected. Gas production rate for water vapor is QH2O 1030 s−1. The bulk of data doesn't contradict to the Whipple model of nucleus (with clathrate modification). Pronounced spatial structure of gaseous flow in the coma was observed, but in general measured properties of neutral gas in the coma of Comet Halley are not very different from predicted. Situation for dust is different. In situ dust measurements show that size spectrum and optical properties of particles in coma are substantively declining from predicted on the base of groundbased photometry. However there are discrepancies between Vega and Giotto dust counter data. Dust in the inner coma didn't prevent the succesful imaging of nucleus by TV on Vega 1 and 2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号