首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4471篇
  免费   5篇
  国内免费   10篇
航空   1961篇
航天技术   1644篇
综合类   12篇
航天   869篇
  2021年   46篇
  2019年   24篇
  2018年   78篇
  2017年   60篇
  2016年   57篇
  2015年   26篇
  2014年   91篇
  2013年   132篇
  2012年   117篇
  2011年   180篇
  2010年   132篇
  2009年   193篇
  2008年   237篇
  2007年   125篇
  2006年   90篇
  2005年   129篇
  2004年   139篇
  2003年   141篇
  2002年   97篇
  2001年   140篇
  2000年   75篇
  1999年   98篇
  1998年   128篇
  1997年   82篇
  1996年   88篇
  1995年   121篇
  1994年   145篇
  1993年   72篇
  1992年   87篇
  1991年   34篇
  1990年   44篇
  1989年   79篇
  1988年   35篇
  1987年   34篇
  1986年   39篇
  1985年   144篇
  1984年   122篇
  1983年   98篇
  1982年   84篇
  1981年   169篇
  1980年   34篇
  1979年   36篇
  1978年   41篇
  1977年   35篇
  1976年   32篇
  1975年   39篇
  1974年   34篇
  1973年   32篇
  1972年   49篇
  1970年   24篇
排序方式: 共有4486条查询结果,搜索用时 187 毫秒
261.
Sharp (<10 min) and large (>20%) solar wind ion flux changes are common phenomena in turbulent solar wind plasma. These changes are the boundaries of small- and middle-scale solar wind plasma structures which can have a significant influence on Earth’s magnetosphere. These solar wind ion flux changes are typically accompanied by only a small change in the bulk solar wind velocity, hence, the flux changes are driven mainly by plasma density variations. We show that these events occur more frequently in high-density solar wind. A characteristic of solar wind turbulence, intermittency, is determined for time periods with and without these flux changes. The probability distribution functions (PDF) of solar wind ion flux variations for different time scales are calculated for each of these periods and compared. For large time scales, the PDFs are Gaussian for both data sets. For small time scales, the PDFs from both data set are more flat than Gaussian, but the degree of flatness is much larger for the data near the sharp flux change boundaries.  相似文献   
262.
Recently much attention has been focused on the transient behavior of the magnetopause in response to pressure pulses and southward fluctuations of the interplanetary magnetic field. We examine the motion of the magnetopause behind the foreshock and conclude that this motion is affected by foreshock pressure variations but not by fluctuations in the direction of the magnetic field. Neither magnetopause erosion nor flux transfer event occurrence is controlled by the foreshock. On the contrary, flux transfer events occur at times of steady IMF and thier quasi-periodic behavior is controlled by the magnetopause or the magnetosphere and is not driven by the external boundary conditions. Since flux transfer events are clearly due to reconnection, this observation implies that the IMF must be southward some time perhaps as long as 7 minutes before flux transfer begins.  相似文献   
263.
This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.  相似文献   
264.
We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed.  相似文献   
265.
266.
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms.  相似文献   
267.
We present an investigation of the influence of the 27-day solar flux variations, caused by solar rotation, on the ionosphere parameters such as the F2 layer critical frequency (foF2) and the total electron content (TEC). Our observational data were obtained with the Irkutsk Digisonde (DPS-4) located at 52.3 North and 104.3 East during the period from 2003 to 2005. In addition, we use TEC data from the Global Ionosphere Maps (GIM) based on Global Positioning System (GPS) satellites. The solar radiation flux at a wavelength of 10.7 cm (F10.7 index) is used as an index characterizing the solar activity level. A good correlation between observed ionosphere parameters and solar activity variations is found especially in autumn-to-winter season. We estimate the impact of the 27-day solar flux variations on the day-to-day variability and determine the time delay of the ionosphere response.  相似文献   
268.
Vannaroni  G.  Dobrowolny  M.  De Venuto  F. 《Space Debris》1999,1(3):159-172
Electrodynamic tethers have been recently proposed for satellite and rocket upper stage deorbiting to mitigate the debris problem at Low Earth Orbits (LEOs). The deorbiting performance of several electrodynamic tethers, where the electron collection from the ionosphere is obtained with either simple bare wires or bare wires terminated with conducting spherical collectors, was analyzed and compared. Our results indicate that the use of the spherical collectors at the positive termination of the system significantly enhances the deorbiting capabilities of the electrodynamic bare tethers.  相似文献   
269.
The orbiting solar telescope on Salyut-4 (F = 2,5 m, d = 250 mm) produces images of the Sun on the entrance slit of a stigmatic two-grating spectrograph (R1 = 1 m, N1 = 1200 lines/mm; R2 = 0.5 m, N2 = 2400 lines/mm, dispersion 16 Å/mm, spectral resolution 0,3 Å). The automatic system keeps the observed solar features on the slit of the spectrograph with an accuracy of 3–4 arc sec. The far UV-spectra (970–1400 Å) of solar flares, brightenings, flocculi and prominences were photographed and fresh coatings of mirrors were made during the flight.  相似文献   
270.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号