首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2684篇
  免费   2篇
  国内免费   19篇
航空   1328篇
航天技术   1056篇
综合类   11篇
航天   310篇
  2019年   18篇
  2018年   26篇
  2017年   18篇
  2016年   17篇
  2014年   47篇
  2013年   61篇
  2012年   52篇
  2011年   83篇
  2010年   61篇
  2009年   104篇
  2008年   158篇
  2007年   64篇
  2006年   67篇
  2005年   69篇
  2004年   79篇
  2003年   81篇
  2002年   51篇
  2001年   76篇
  2000年   49篇
  1999年   63篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   78篇
  1994年   78篇
  1993年   50篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   70篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   119篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   104篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1971年   16篇
  1970年   25篇
  1969年   26篇
排序方式: 共有2705条查询结果,搜索用时 109 毫秒
711.
The principle of establishing and maintaining a gravitropic set point angle depends on gravisensing and a subsequent cascade of events that result in differential elongation of the responsive structures. Since gravity acts upon masses, the gravisensing mechanisms of all biological systems must follow the same principle, namely the sensing of some force due to differential acceleration of the perceiving entity and a reference structure. This presentation will demonstrate that gravisensing can be accomplished by various means, ranging from cytoskeletal organization, mechano-elastic stress to perturbation of electric signals. However, several arguments indicate that sedimentation of either dense plastids (statoliths), the entire protoplast, or a combination of these represents the primary step in graviperception in plants. In fungi, nuclei and cytoskeletal proteins are believed to form a network capable of gravisensing but sedimenting organelles that may function as statoliths have been identified. Theoretical and practical limitations of gravisensing and detection of acceleration forces necessitate microgravity experiments to identify the primary perceptor, subsequent biochemical mechano-transduction, and biological response processes.  相似文献   
712.
In the course of a densitometric evaluation, the histochemically demonstrated reactivity of succinic acid dehydrogenase (SDH) and of NADPH-diaphorase (NADPHD) was determined in different brain nuclei of two teleost fish (cichlid fish Oreochromis mossambicus, swordtail fish Xiphophorus helleri), which had been kept under 3g hyper-gravity for 8 days. SDH was chosen since it is a rate limiting enzyme of the Krebs cycle and therefore it is regarded as a marker for metabolic and neuronal activity. NADPHD reactivity reflects the activity of nitric oxide synthase. Nitric oxide (NO) is a gaseous intercellular messenger that has been suggested to play a major role in several different in vivo models of neuronal plasticity including learning. Within particular vestibulum-connected brain centers, significant effects of hyper-gravity were obtained, e.g., in the magnocellular nucleus, a primary vestibular relay ganglion of the brain stem octavolateralis area, in the superior rectus subdivision of the oculomotoric nucleus and within cerebellar eurydendroid cells, which in teleosts possibly resemble the deep cerebellar nucleus of higher vertebrates. Non-vestibulum related nuclei did not respond to hyper-gravity in a significant way. The effect of hyper-gravity found was much less distinct in adult animals as compared to the circumstances seen in larval fish (Anken et al., Adv. Space Res. 17, 1996), possibly due to a development correlated loss of neuronal plasticity.  相似文献   
713.
714.
Configurationaerodynamicdesignconceptsareaimedatthedefinitionoffindingairframeandpropulsioncomponentgeometrieswithacontroledf...  相似文献   
715.
The structure and dynamics of a box in a stellar corona can be modeled employing a 3D MHD model for different levels of magnetic activity. Depending on the magnetic flux through the surface the nature of the resulting coronal structures can be quite different. We investigate a model of an active region for two sunspots surrounded by magnetic field patches comparable in magnetic flux to the sunspots. The model results in emission from the model corona being concentrated in loop structures. In Gudiksen and Nordlund (2005) the loops seen in EUV and X-ray emission outline the magnetic field, following the general paradigm. However, in our model, where the magnetic field is far from a force-free state, the loops seen in X-ray emission do not follow the magnetic field lines. This result is of interest especially for loops as found in areas where the magnetic field emerging from active regions interacts with the surrounding network.  相似文献   
716.
It has been suggested that a manned mission to Mars be launched at solar maximum rather than at solar minimum to minimize the radiation exposure to galactic cosmic rays. It is true that the number of hits from highly ionizing particles to critical regions in the brain will be less at solar maximum, and it is of interest to estimate how much less. We present here calculations for several sites within the brain from iron ions (z = 26) and from particles with charge, z, greater than or equal to 15. The same shielding configurations and sites in the brain used in an earlier paper for solar minimum are employed so that direct comparison of results between the two solar activity conditions can be made. A simple pressure-vessel wall and an equipment room onboard a spacecraft are chosen as shielding examples. In the equipment room, typical results for the thalamus are that the probability of any particles with 7 greater than or equal to 15 and from 2.3 percent to 1.3 percent for iron ions. The extra shielding provided in the equipment room makes little difference in these numbers. We conclude that this decrease in hit frequency (less than a factor of two) does not provide a compelling reason to avoid solar minimum for a manned mission to Mars. This conclusion could be revised, however, if a very small number of hits is found to cause critical malfunction within the brain.  相似文献   
717.
Future spacecraft and high-altitude airship (HAA) solar array technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates [1]. Thin-film array technology, with thin-film specific array support structure, begin to exceed the specific power of crystalline multi-junction arrays with thin-film device efficiencies as low as 8.5% [2]. Thin-film PV devices have other advantages in that they are more easily integrated into HAAs, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only).  相似文献   
718.
In this paper we report on initial work toward data assimilative modeling of the Earth’s plasmasphere. As the medium of propagation for waves which are responsible for acceleration and decay of the radiation belts, an accurate assimilative model of the plasmasphere is crucial for optimizing the accurate prediction of the radiation environments encountered by satellites. On longer time-scales the plasmasphere exhibits significant dynamics. Although these dynamics are modeled well by existing models, they require detailed global knowledge of magnetospheric configuration which is not always readily available. For that reason data assimilation can be expected to be an effective tool in improving the modeling accuracy of the plasmasphere. In this paper we demonstrate that a relatively modest number of measurements, combined with a simple data assimilation scheme, inspired by the ensemble Kalman filtering data assimilation technique does a good job of reproducing the overall structure of the plasmasphere including plume development. This raises hopes that data assimilation will be an effective method for accurately representing the configuration of the plasmasphere for space weather applications.  相似文献   
719.
In recent years the variability of the cosmic ray flux has become one of the main issues not only for the interpretation of the abundances of cosmogenic isotopes in cosmochronic archives like, e.g., ice cores, but also for its potential impact on the terrestrial climate. It has been re-emphasized that the cosmic ray flux is not only varying due to the solar activity-induced changes of the solar wind but also in response to the changing state of the interstellar medium surrounding the heliosphere. We demonstrate the significance of these external boundary condition changes along the galactic orbit of the Sun for the flux as well as spectra of cosmic rays. Such interstellar–terrestrial relations are a major topic of the International Heliophysical Year 2007.  相似文献   
720.
We examined two consecutive plasma sheet oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current sheet thinning and plasma sheet oscillations of 3–5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and plasma sheet oscillations in the near-Earth magnetotail. One of the plasma sheet oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the plasma sheet oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding plasma sheet oscillations can reach the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号