首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
航空   11篇
航天技术   8篇
航天   2篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
12.
We compared quantitatively vinculin-related adhesion parameters in osteoblastic cells submitted to opposite mechanical stresses, i.e., low deformation and frequency strain regimens (stretch condition) and microgravity exposure (relaxed condition). Cyclic deformation induced a biphasic response comprising new focal contacts formation followed by their clustering in ROS cells. Microgravity exposure induced a reduction in focal contact number and clustering in ROS cells. We previously demonstrated that 1% cyclic deformations at 0.05 Hz during a daily 10 min episode over 7 days stimulated ROS 17/2.8 growth as compared to static culture whereas relaxed ROS proliferated similarly to static culture (BC). To evaluate whether the proliferation (stretch) or the survival (relaxed) status of ROS cells influences focal contact organization, we inhibited ERKs proliferative-dependent pathway. Inhibition of proliferation by PD98059 was overcome although not fully restored by stretch. Furthermore stretch-induced clustering of vinculin-positive contacts still occurs in the presence of ERKs inhibitor, whereas the increase in focal contact number is abolished. In conclusion, we showed that focal contacts are mechanoeffectors and that hyper-mechanical stimulation could up regulate focal contacts size as compared to hypo-mechanical that down regulate clusterization.  相似文献   
13.
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applications most of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore, on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will be useful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensive network of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity – known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor’s data usage.  相似文献   
14.
The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP3) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP3. A pile driving model has been developed considering all masses of the hammering mechanism of HP3. By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight/HP3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response.  相似文献   
15.
For the evolution of the secondary component of a massive close binary system, it is generally assumed that the mass accretion during core H-burning simply leads to its rejuvenation, i.e. that it evolves like a normal main sequence star with a mass corresponding to its mass after the accretion ceased. We reinvestigate this problem in the framework of a time-dependent semiconvection theory. We find that the process of adaptation of the convective core size to the new (larger) stellar mass may not be completed until core hydrogen depletion, i.e. no rejuvenation occurs. The resulting secondaries show strong differences compared to single stars of same mass.  相似文献   
16.
Highly efficient low-thrust propulsion is increasingly applied beyond commercial use, also in mainstream and flagship science missions, in combination with gravity assist propulsion. Another recent development is the growth of small spacecraft solutions, not in size but in numbers and individual capabilities.Just over ten years ago, the DLR-ESTEC Gossamer Roadmap to Solar Sailing was set up to guide technology developments towards a propellant-less and highly efficient class of spacecraft for solar system exploration and applications missions: small spacecraft solar sails designed for carefree handling and equipped with carried application modules.Soon, in three dedicated Gossamer Roadmap Science Working Groups it initiated studies of missions uniquely feasible with solar sails such as Displaced L1 (DL1) space weather advance warning and monitoring, Solar Polar Orbiter (SPO) delivery to very high inclination heliocentric orbit, and multiple Near-Earth Asteroid (NEA) rendezvous (MNR). Together, they demonstrate the capability of near-term solar sails to achieve at least in the inner solar system almost any kind of heliocentric orbit within 10 years, from the Earth-co-orbital to the extremely inclined, eccentric and even retrograde. Noted as part of the MNR study, sail-propelled head-on retrograde kinetic impactors (RKI) go to this extreme to achieve the highest possible specific kinetic energy for the deflection of hazardous asteroids.At DLR, the experience gained in the development of deployable membrane structures leading up to the successful ground deployment test of a (20 m)2, i.e., 20 m by 20 m square solar sail at DLR Cologne in 1999 was revitalized and directed towards a 3-step small spacecraft development line from as-soon-as-possible sail deployment demonstration (Gossamer-1) via in-flight evaluation of sail attitude control actuators (Gossamer-2) to an envisaged proving-the-principle flight in the Earth-Moon system (Gossamer-3). First, it turned the concept of solar sail deployment on its head by introducing four separable Boom Sail Deployment Units (BSDU) to be discarded after deployment, enabling lightweight 3-axis stabilized sailcraft. By 2015, this effort culminated in the ground-qualified technology of the DLR Gossamer-1 deployment demonstrator Engineering Qualification Model (EQM). For mission types using separable payloads, such as SPO, MNR and RKI, design concepts can be derived from the BSDU characteristic of DLR Gossamer solar sail technology which share elements with the separation systems of asteroid nanolanders like MASCOT. These nano-spacecraft are an ideal match for solar sails in micro-spacecraft format whose launch configurations are compatible with ESPA and ASAP secondary payload platforms.Like any roadmap, this one contained much more than the planned route from departure to destination and the much shorter distance actually travelled. It is full of lanes, narrow and wide, detours and shortcuts, options and decision branches. Some became the path taken on which we previously reported. More were explored along the originally planned path or as new sidings in search of better options when circumstance changed and the project had to take another turn. But none were dead ends, they just faced the inevitable changes when roadmaps face realities and they were no longer part of the road ahead. To us, they were valuable lessons learned or options up our sleeves. But for future sailors they may be on their road ahead.  相似文献   
17.
Lomnický Štít (LS, situated at High Tatra mountain, 2634 m above sea level, in the direction of 49.40°N, 20.22°E; geomagnetic vertical cut-off rigidity for cosmic rays ∼4 GV) is a relevant place for cosmic ray studies. After a brief review of the LS research history we present a selection of the results based on the measurements performed by the neutron monitor located at that site. In particular, the characteristics of quasi-periodicities and the diurnal variability amplitude and phase obtained from those data are discussed.  相似文献   
18.
MUPUS, the multi purpose sensor package onboard the Rosetta lander Philae, will measure the energy balance and the physical parameters in the near-surface layers – up to about 30 cm depth- of the nucleus of Rosetta’s target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as the comet approaches the sun. Among the parameters studied are the density, the porosity, cohesion, the thermal diffusivity and conductivity, and temperature. The data should increase our knowledge of how comets work, and how the coma gases form. The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data will indicate how pristine cometary matter sampled and analysed by other experiments on Philae really is.  相似文献   
19.
德国在若干年前启动的国家CFD项目MEGAFLOW集中了DLR、大学以及航空工业界的许多CFD研究开发工作,目的是开发并验证能满足工业实践所要求的可靠并有效的数值工具,以对全机进行空气动力模拟.MEGAFLOW软件系统包括多区结构网格中求解N-S方程的软件FLOWer和在非结构网格中的软件TAU.两软件均已达到很高的成熟度并为DLR和德国航空工业广泛地应用于新飞机的设计过程.最近又启动了其后续项目MEGADESIGN和MegaOpt,旨在开发和增强外形设计及优化的有效数值方法.着重介绍了软件最近的改进及其计算粘性流动绕复杂飞机外形的能力.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号