首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   0篇
  国内免费   2篇
航空   59篇
航天技术   61篇
航天   43篇
  2021年   11篇
  2019年   9篇
  2018年   11篇
  2017年   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2005年   10篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   11篇
  1983年   3篇
  1982年   4篇
  1981年   15篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有163条查询结果,搜索用时 31 毫秒
11.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
12.
13.
We studied solar wind observations of five different spacecraft: Helios 1, Helios 2, IMP-8, Voyager 1 and Voyager 2, from November 1977 to February 1978. In this period the large-scale dynamics of the solar wind near of the ecliptic plane was characterized by transient forward shocks (TFSs), ejecta, unstable corotating interaction regions (CIRs), and complex and variable magnetic sector structures. We identified 12 forward shock events of different origin. We did not find any clear tendency of the shock parameters with heliocentric distance nor longitudinal angle, but comparing the observations of each shock event we found local variations in the shock strength and the mean propagation velocities from one spacecraft to another. These unsystematic variations indicate that there were local deformations of the shock fronts, which we attribute to the inhomogenuos solar wind structure that affects the shock propagation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
14.
Using full-disc white light photoheliograms, we have studied umbrae motion and variations in sunspot areas in a large activity complex over 4 solar rotations. On the basis of the observational data we illustrate with typical examples to what extent rapid spot motions are associated with flare occurrences.  相似文献   
15.
Density data from the French CACTUS accelerometer are used to determine values of density scale height. An analysis shows a diurnal effect in the variations of scale height. There exists a correlation between geomagnetic activity and variations of scale height. Variations of the gradient of scale height are shown and analysed.  相似文献   
16.
X-ray data obtained by the Prognoz 5,6,7 and 8 hard X-ray photometers are compared with the measurements carried out by similar instruments aboard the Solrad 11, ISEE 3, SMM and Hinotori satellites. Using the method of relative amplitude analysis, the apparent disagreement in the energy discrimination level calibration between the instruments is pointed out. The results of the comparison and the possible sources of disagreement are given. We suggest an international effort be made to develop a system of uniform pre-launch calibration of photometers based on a reference calibration source.  相似文献   
17.
18.
During the observation of solar cosmic rays on the Prognoz 6 and Helios 1 and 2 spacecrafts, several events with anomalous composition of accelerated particles (higher abundance of 3-He or Fe nuclei) occurred. We found seven such events from the period September to December 1977 for which data from the Prognoz 6 solar X-ray photometer are available. This material together with published optical and radio data from terrestrial observatories enabled us to identify more reliably the source flares and describe their characteristics. It turned out that the character of X-ray emission accompanying the emission of accelerated particles with anomalous composition shows no pronounced difference from other flares. No correlation has been found among the ratio 3-He/4-He and the angular distance between the field lines connected with the source flare and the place of observation. If a solar flare with anomalous ratio 3-He/4-He appears in a given active region, this region will probably produce other anomalous events.  相似文献   
19.
We report on extensive BVRcIc photometry and low-resolution (λ/Δλ250) spectroscopy of the deep-space debris WT1190F, which impacted Earth offshore from Sri Lanka, on 2015 November 13. In spite of its likely artificial origin (as a relic of some past lunar mission), the case offered important points of discussion for its suggestive connection with the envisaged scenario for a (potentially far more dangerous) natural impactor, like an asteroid or a comet.Our observations indicate for WT1190F an absolute magnitude Rc=32.45±0.31, with a flat dependence of reflectance on the phase angle, such as dRc/d?0.007±2?mag?deg?1. The detected short-timescale variability suggests that the body was likely spinning with a period twice the nominal figure of Pflash=1.4547±0.0005s, as from the observed lightcurve. In the BVRcIc color domain, WT1190F closely resembled the Planck deep-space probe. This match, together with a depressed reflectance around 4000 and 8500 Å may be suggestive of a “grey” (aluminized) surface texture.The spinning pattern remained in place also along the object fiery entry in the atmosphere, a feature that may have partly shielded the body along its fireball phase perhaps leading a large fraction of its mass to survive intact, now lying underwater along a tight (1×80?km) strip of sea, at a depth of 1500?m or less.Under the assumption of Lambertian scatter, an inferred size of 216±30/α/0.1?cm is obtained for WT1190F. By accounting for non-gravitational dynamical perturbations, the Area-to-Mass ratio of the body was in the range (0.006?AMR?0.011)?m2?kg?1.Both these figures resulted compatible with the two prevailing candidates to WT1190F’s identity, namely the Athena II Trans-Lunar Injection Stage of the Lunar Prospector mission, and the ascent stage of the Apollo 10 lunar module, callsign “Snoopy”. Both candidates have been analyzed in some detail here through accurate 3D CAD design mockup modelling and BRDF reflectance rendering to derive the inherent photometric properties to be compared with the observations.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号