首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   0篇
  国内免费   6篇
航空   132篇
航天技术   65篇
综合类   1篇
航天   66篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   16篇
  2017年   9篇
  2016年   2篇
  2015年   6篇
  2014年   11篇
  2013年   22篇
  2012年   11篇
  2011年   21篇
  2010年   15篇
  2009年   13篇
  2008年   15篇
  2007年   19篇
  2006年   10篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   2篇
  1967年   3篇
  1966年   1篇
排序方式: 共有264条查询结果,搜索用时 15 毫秒
31.
Collinear Earth–Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be maintained regularly which constrains operations and maneuver locations. Stationkeeping is challenging due to relatively short time scales for divergence, effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories is explored using Poincaré maps in the circular restricted three-body problem. Operational stationkeeping results obtained using the Optimal Continuation Strategy are presented and compared to orbit stability information generated from mode analysis based in dynamical systems theory.  相似文献   
32.
33.
SIGMA - 3 gas chromatograph on board VEGA 1 and 2 landing probes has been operated successfully in the 60 - 50 km altitude range, providing several in - situ chemical analysis of the gas and the aerosols of Venus cloud layers. Post flight calibration required to derive atmospheric abundancies from gas chromatograms were carried out using the SIGMA - 3 spare model. A Venus atmospheric aerosol simulation chamber was used in which sulfuric acid droplets were generated. Preliminary results of these calibration experiments indicate that the concentration of sulfuric acid in the upper part of the clouds ( 60 to 55 km) is about 1 mg/m3 and suggest that an additional constituant must be present in noticeable amount in the aerosols. From these experiments the mixing ratio upper limits of SO2 is 100 ppmV and of H2S and COS is few 10 ppmV.  相似文献   
34.
Abstract

Projective prepositions express the relation between two objects by referring to a direction in space and have traditionally been regarded as expressing purely geometric relations. Recent studies have shown that the appropriateness of English and Spanish projectives also depends on functional relations between objects. This study investigates if the acceptability of the Swedish projectives över, under, ovanför and nedanför are influenced by functional factors as well, and whether över and under are differentially influenced by function than ovanför and nedanför, as has been shown for their English cognates. It also investigates how the shape and parts of the related objects influence their functional interaction, and thereby the acceptability of the prepositions. This is done with respect to the predictions of the AVS-model, a model of the perceptual processes underlying the apprehension of projectives, which takes both the geometric and the functional relation between objects into account. It was found that acceptability judgments about the prepositions are influenced by function as their corresponding English and Spanish prepositions. The acceptability of över was more sensitive to function than ovanför, whereas under and nedanför were not differentially influenced by function, as has been shown for Spanish. It was further found that the shape and parts of both of the related objects influence acceptability regions associated with the prepositions in predictable ways, as functional interactions between objects largely depend on their parts. The results finally show that the AVS-model needs to be further developed in order to account for the form and function of the located object.  相似文献   
35.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
36.
The instruments on the Dawn spacecraft are exceptionally well suited to characterize and map the surface composition of Vesta in an integrated manner. These include a framing camera with multispectral capabilities, a high spectral resolution near-infrared imaging spectrometer, and a gamma-ray and neutron spectrometer. Three examples of issues addressed at Vesta are: (1) What is the composition of Vesta??s interior and differentiation state as exposed by the Great South Crater? (2) How has space weathering affected Vesta, both globally and at a local scale? and (3) Are volatiles or hydrated material present on Vesta??s surface? We predict that Dawn finds many surprises, such as an olivine-bearing mantle exposed near the south-pole, a weakly or un-weathered surface that has been relatively recently resurfaced, and a very thin layer of surficial volatiles derived from interaction with the solar wind.  相似文献   
37.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
38.
This paper considers the design of PCM signals with system constraints using Pontryagin's maximum principle. The transmitter signal as well as the correlation signal are determined while maximizing the output signal-to-noise ratio. Both the single and three-pole transmitter filters are considered. An upper bound has been obtained on the performance of PCM signals with constraints.  相似文献   
39.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   
40.
Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres?? evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres?? state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号