首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   0篇
  国内免费   6篇
航空   132篇
航天技术   65篇
综合类   1篇
航天   66篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   16篇
  2017年   9篇
  2016年   2篇
  2015年   6篇
  2014年   11篇
  2013年   22篇
  2012年   11篇
  2011年   21篇
  2010年   15篇
  2009年   13篇
  2008年   15篇
  2007年   19篇
  2006年   10篇
  2005年   12篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1968年   2篇
  1967年   3篇
  1966年   1篇
排序方式: 共有264条查询结果,搜索用时 296 毫秒
161.
When the number of filter coefficients is large, the solution of the discrete-time matched filter equation can be computationally difficult. In this paper several techniques are presented for approximating the impulse response of a matched filter without actually solving the matched filter equation. The performance of these approximating filters is analyzed and compared with the performance of the matched filter. It is also shown that an approximation which is best in a mean-squared-error sense is not necessarily best in terms of output signal-to-noise ratio.  相似文献   
162.
Space exploration is an emblematic domain of space activities where traditionally only established space powers have been active. However, new actors are demonstrating great interest in it, principally for international prestige reasons, with an increasing number making ambitious plans. Complementing national endeavours, international cooperation has become a central element of most countries' exploration strategy, since the costs of doing it alone are so great. Europe's development into a fully fledged actor in space exploration requires a shared assessment of the future challenges, threats and opportunities with which it will be confronted in order to derive the best options for cooperation to lead and anticipate rather than follow and endure change.  相似文献   
163.
The Deep Impact observations of low thermal inertia for comet 9P/Tempel 1 are of profound importance for the observations to be made by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. While sub-surface sublimation is necessary to explain the observations, the depth at which this occurs is no more than 2–3 cm and possibly less. The low thermal conductivity when combined with local surface roughness (also observed with Deep Impact) implies that local variations in outgassing rates can be substantial. These variations are likely to be on scales smaller than the resolution limits of all experiments on the Rosetta orbiter. The observed physico-chemical inhomogeneity further suggests that the Rosetta lander will only provide a local snapshot of conditions in the nucleus layer.  相似文献   
164.
McCollom TM 《Astrobiology》2007,7(6):933-950
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.  相似文献   
165.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W.  相似文献   
166.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   
167.
In this discussion of observational constraints on the source regions and acceleration processes of solar wind, we will focus on the ionic composition of the solar wind and the distribution of charge states of heavy elements such as oxygen and iron. We first focus on the now well-known bi-modal nature of solar wind, which dominates the heliosphere at solar minimum: Compositionally cool solar wind from polar coronal holes over-expands, filling a much larger solid angle than the coronal holes on the Sun. We use a series of remote and in-situ characteristics to derive a global geometric expansion factor of?~5. Slower, streamer-associated wind is located near the heliospheric current sheet with a width of 10–20°, but in a well-defined band with a geometrically small transition width. We then compute charge states under the assumption of thermal electron distributions and temperature, velocity, and density profiles predicted by a recent solar wind model, and conclude that the solar wind originates from a hot source at around 1 million?K, characteristic of the closed corona.  相似文献   
168.
Galactic cosmic ray nuclei and energetic protons produced in solar flares and accelerated by coronal mass ejections are the main sources of high-energy particles of extraterrestrial origin in near-Earth space and inside the Earth’s atmosphere. The intensity of galactic cosmic rays inside the heliosphere is strongly influenced by the modulation of the interstellar source particles on their way through interplanetary space. Among others, this modulation depends on the activity of the Sun, and the resulting intensity of the energetic particles in the atmosphere is an indicator of the solar activity. Therefore, rare isotopes found in historical archives and produced by spallation reactions of primary and secondary hadrons of cosmic origin in the atmosphere, so-called cosmogenic nuclides, can be used to reconstruct the solar activity in the past. The production rate of 10Be, one of the cosmogenic nuclides most adequate to study the solar activity, is presented showing its variations with geographic latitude and altitude and the dependence on different production cross-sections present in literature. In addition, estimates for altitude integrated production rates of 10Be at different locations since the early nineteen sixties are shown.  相似文献   
169.
Determining how the heliospheric magnetic field and plasma connect to the Sun’s corona and photosphere is, perhaps, the central problem in solar and heliospheric physics. For much of the heliosphere, this connection appears to be well understood. It is now generally accepted that so-called coronal holes, which appear dark in X-rays and are predominantly unipolar at the photosphere, are the sources of quasi-steady wind that is generally fast, >500?km/s, but can sometimes be slow. However, the connection to the Sun of the slow, non-steady wind is far from understood and remains a major mystery. We review the existing theories for the sources of the non-steady wind and demonstrate that they have difficulty accounting for both the observed composition of the wind and its large angular extent. A?new theory is described in which this wind originates from the continuous opening and closing of narrow open field corridors in the corona, which give rise to a web of separatrices (the S-Web) in the heliosphere. Note that in this theory the corona—heliosphere connection is intrinsically dynamic, at least for this type of wind. Support for the S-Web model is derived from MHD solutions for the corona and wind during the time of the August 1, 2008 eclipse. Additionally, we perform fully dynamic numerical simulations of the corona and heliosphere in order to test the S-Web model as well as the interchange model proposed by Fisk and co-workers. We discuss the implications of our simulations for the competing theories and for understanding the corona—heliosphere connection, in general.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号