首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   0篇
航空   194篇
航天技术   30篇
航天   32篇
  2021年   3篇
  2018年   66篇
  2017年   38篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   14篇
  2010年   8篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   3篇
  2001年   8篇
  2000年   1篇
  1999年   1篇
  1998年   8篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   5篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1976年   2篇
  1975年   5篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
141.
Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three-dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.  相似文献   
142.
Some characteristic zones of parts shaped by the multi-pass rotary drawing are presented. Also given are the analytical relations determining deformations in two directions within these zones and recommendations useful to calculate the values of stresses.  相似文献   
143.
144.
It is rather well recognized that the global dynamics of the Sun–Earth relationship involves complex nonlinear phenomena. Here we present a preliminary attempt to characterize the influence and the timing of the solar magnetic activity on the near-Earth environment, based on quite novel tools based on concepts from information theory.  相似文献   
145.
146.
147.
We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10–100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells’ theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10–20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.  相似文献   
148.
The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.  相似文献   
149.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
150.
C.D. Jilla  D.W. Miller   《Acta Astronautica》2001,48(5-12):529-543
A heuristic multidisciplinary design optimization technique has been investigated for applicability to the conceptual design of distributed satellite systems. Different permutations of a simulated algorithm are applied to the problem of developing a systems architecture that minimizes a multicriterion metric (cost per image) for the NASA Origins Terrestrial Planet Finder mission. It was found that the efficiency of the simulated annealing algorithm could be improved by modifying the degrees of freedom within the algorithm. Further, a methodology has been developed for finding the Pareto-optimal set of design solutions within the system trade space when the distributed satellite system is modeled as a multi-objective design problem. These advances combine to yield new tools for systems engineers exploring the trade space of distributed satellite systems during the conceptual design stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号