全文获取类型
收费全文 | 4918篇 |
免费 | 42篇 |
国内免费 | 11篇 |
专业分类
航空 | 2059篇 |
航天技术 | 1628篇 |
综合类 | 26篇 |
航天 | 1258篇 |
出版年
2022年 | 23篇 |
2021年 | 53篇 |
2019年 | 36篇 |
2018年 | 215篇 |
2017年 | 158篇 |
2016年 | 133篇 |
2015年 | 54篇 |
2014年 | 149篇 |
2013年 | 184篇 |
2012年 | 158篇 |
2011年 | 254篇 |
2010年 | 191篇 |
2009年 | 286篇 |
2008年 | 288篇 |
2007年 | 175篇 |
2006年 | 111篇 |
2005年 | 141篇 |
2004年 | 143篇 |
2003年 | 160篇 |
2002年 | 113篇 |
2001年 | 166篇 |
2000年 | 63篇 |
1999年 | 89篇 |
1998年 | 99篇 |
1997年 | 81篇 |
1996年 | 74篇 |
1995年 | 115篇 |
1994年 | 84篇 |
1993年 | 60篇 |
1992年 | 80篇 |
1991年 | 21篇 |
1990年 | 33篇 |
1989年 | 68篇 |
1988年 | 28篇 |
1987年 | 31篇 |
1986年 | 27篇 |
1985年 | 116篇 |
1984年 | 96篇 |
1983年 | 79篇 |
1982年 | 73篇 |
1981年 | 122篇 |
1980年 | 55篇 |
1979年 | 29篇 |
1978年 | 30篇 |
1977年 | 25篇 |
1976年 | 28篇 |
1975年 | 26篇 |
1974年 | 22篇 |
1972年 | 19篇 |
1971年 | 17篇 |
排序方式: 共有4971条查询结果,搜索用时 15 毫秒
441.
V. Gushin D. Shved A. Vinokhodova G. Vasylieva I. Nitchiporuk B. Ehmann L. Balazs 《Acta Astronautica》2012
“Mars-105” experiment was executed in March–July 2009 in Moscow, at the Institute for Bio-Medical Problems (IBMP) with participation of European Space Agency (ESA) to simulate some specific conditions of future piloted Mars mission. In the last 35 days of isolation, in order to simulate autonomous flight conditions, some serious restrictions were established for the crew resupply and communication with Mission Control (MC). The objective of the study was to investigate psychophysiological and behavioral aspects (communication) of adaptation during this period of “high autonomy”. We used computerized analysis of the crew written daily reports to calculate the frequencies of utilization of certain semantic units, expressing different psychological functions. To estimate the level of psycho-physiological stress, we measured the concentration of urinal cortisol once in two weeks. To investigate psycho-emotional state, we used the questionnaire SAN, estimating Mood, Activity and Health once in two weeks.During the simulation of autonomous flight, we found out the different tendencies of communicative behavior. One group of subjects demonstrated the tendency to “activation and self-government” under “high autonomy” conditions. The other subjects continued to use communicative strategy that we called “closing the communication channel”. “Active” communication strategy was accompanied by increasing in subjective scores of mood and activity. The subjects, whose communication strategy was attributed as “closing”, demonstrated the considerably lower subjective scores of mood and activity. Period of high autonomy causes specific changes in communication strategies of the isolated crew. 相似文献
442.
In this paper, we analyze the illumination conditions, the thermal regime, and the possibility of deposits of volatile compounds existing in the vicinity region (NSR S5 region) near the southern pole of the Moon. It has been found that there are no permanently shadowed zones near the Scott crater and the NSR S5 region, though the temperature conditions allow the of compounds such as CH3OH, SO2, NH3, CO2, H2S, C2H4, and water to remain stable relative to evaporation for a long time (≥1 Gyr). It has been also shown that compounds like CO and CH4 cannot stably exist in these regions. 相似文献
443.
S. Yashiro N. Gopalswamy P. Mäkelä S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Chandra P.K. Manoharan K. Mahalakshmi V.C. Dwivedi R. Jain A.K. Awasthi N.V. Nitta M.J. Aschwanden D.P. Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs. 相似文献
444.
G E Bingham F B Salisbury W F Campbell J G Carman D L Bubenheim B Yendler V N Sytchev M A Berkovitch YuALevinskikh I G Podolsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):225-232
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.] 相似文献
445.
Cometary nuclei consist of ices intermixed with dust grains and are thought to be the least modified solar system bodies remaining
from the time of planetary formation. Flyby missions to Comet P/Halley in 1986 showed that cometary dust is extremely rich
in organics (∼50% by mass). However, this proportion appears to be variable among different comets. In comparison with the
CI-chondritic abundances, the volatile elements H, C, and N are enriched in cometary dust indicating that cometary solid material
is more primitive than CI-chondrites. Relative to dust in dense molecular clouds, bulk cometary dust preserves the abundances
of C and N, but exhibits depletions in O and H. In most cases, the carbonaceous component of cometary particles can be characterized
as a multi-component mixture of carbon phases and organic compounds. Cluster analysis identified a few basic types of compounds,
such as elemental carbon, hydrocarbons, polymers of carbon suboxide and of cyanopolyynes. In smaller amounts, polymers of
formaldehyde, of hydrogen cyanide and various unsaturated nitriles also are present. These compositionally simple types, probably,
are essential "building blocks", which in various combinations give rise to the variety of involatile cometary organics.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
446.
K. Durga Prasad S.V.S. Murty 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A Wireless Sensor Network for in situ probing of lunar water/ice is proposed. The mission scenario in single and multi-tier architectures for probing water in a permanently shadowed region of the Moon and different scenarios of exploration are discussed. The ideas presented in the paper are a positive assertion of feasibility for the sensor node hardware, given current levels of technological advancements. 相似文献
447.
. Nmeth L. Macho M. Palkovi
N. kottov R.A. Tigranyan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(14):219-224
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se. 相似文献
448.
David G. Sibeck R. Allen H. Aryan D. Bodewits P. Brandt G. Branduardi-Raymont G. Brown J. A. Carter Y. M. Collado-Vega M. R. Collier H. K. Connor T. E. Cravens Y. Ezoe M.-C. Fok M. Galeazzi O. Gutynska M. Holmström S.-Y. Hsieh K. Ishikawa D. Koutroumpa K. D. Kuntz M. Leutenegger Y. Miyoshi F. S. Porter M. E. Purucker A. M. Read J. Raeder I. P. Robertson A. A. Samsonov S. Sembay S. L. Snowden N. E. Thomas R. von Steiger B. M. Walsh S. Wing 《Space Science Reviews》2018,214(4):79
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds ((sim1~mbox{keV})) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers. 相似文献
449.
This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. 相似文献
450.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献