首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5527篇
  免费   35篇
  国内免费   20篇
航空   2533篇
航天技术   1842篇
综合类   26篇
航天   1181篇
  2021年   49篇
  2019年   47篇
  2018年   217篇
  2017年   166篇
  2016年   99篇
  2015年   47篇
  2014年   126篇
  2013年   144篇
  2012年   150篇
  2011年   295篇
  2010年   235篇
  2009年   314篇
  2008年   353篇
  2007年   242篇
  2006年   118篇
  2005年   160篇
  2004年   144篇
  2003年   165篇
  2002年   114篇
  2001年   158篇
  2000年   84篇
  1999年   102篇
  1998年   123篇
  1997年   88篇
  1996年   96篇
  1995年   126篇
  1994年   113篇
  1993年   86篇
  1992年   114篇
  1991年   45篇
  1990年   44篇
  1989年   97篇
  1988年   41篇
  1987年   46篇
  1986年   38篇
  1985年   142篇
  1984年   117篇
  1983年   104篇
  1982年   105篇
  1981年   127篇
  1980年   60篇
  1979年   51篇
  1978年   39篇
  1977年   25篇
  1976年   26篇
  1975年   23篇
  1974年   25篇
  1973年   21篇
  1972年   20篇
  1970年   18篇
排序方式: 共有5582条查询结果,搜索用时 15 毫秒
961.
A method of technologic audit for technical re-equipment of enterprises is considered. The method developed is intended to verify technological solutions of projects of technical re-equipment of enterprises according to indicators of productivity.  相似文献   
962.
The results of flow field numerical simulation on the typical wing-body prototype of the modern DLR-F4 airliner under sub- and transonic compressible air flow are presented. Using the DLR-F4 CAD model, the effect of the wingtip end plate area and of the cant angle of a typical Whitcomb winglet is studied. The dependencies of the model lift-to-drag ratio increment on the flat wingtip end plate relative area and on the cant angle of an airfoil Whitcomb winglet are obtained. The concept of an elliptic winglet with a variable cant angle that similar to the winglet used on Airbus A350 is studied. A technique is developed for solving the multi-parameter design optimization task for the Whitcomb winglet, taking the maximum lift-to-drag ratio of the wing as a criterion for optimization.  相似文献   
963.
The astrophysical parameters have been estimated for two unstudied open star clusters Teutsch 10 and Teutsch 25 using the Two Micron All Sky Survey (2MASS) database. Radius is estimated as 4.5 arcmin for both clusters using radial density profiles. We have estimated proper motion values in both RA and DEC directions as 2.28±0.3 and -0.38±0.11?mas?yr?1 for Teutsch 10 and 0.48±0.3 and 3.35±0.16?mas?yr?1 for Teutsch 25 using PPMXL1 catalog. By estimating the stellar membership probabilities, we have identified 30 and 28 most likely members for Teutsch 10 and Teutsch 25 respectively. We have estimated the reddening as E(B-V)=0.96±0.3?mag for Teutsch 10 and 0.58±0.2?mag for Teutsch 25, while the corresponding distances are 2.4±0.2 and 1.9±0.1?kpc. Ages of 70±10?Myr for Teutsch 10 and 900±100?Myr for Teutsch 25 are estimated using the theoretical isochrones of metallicity Z?=?0.019. The mass function slopes are derived as 1.23±0.30 and 1.09±0.35 for Teutsch 10 and Teutsch 25 respectively. Estimated mass function slope for both the clusters are close to the Salpeter value (x=1.35) within the errors. Estimated values of dynamical relaxation time are found to be less than cluster’s age for these objects. This concludes that both objects are dynamically relaxed. The possible reason for relaxation may be due to dynamical evolution or imprint of star formation or both.  相似文献   
964.
In our study we analyze and compare the response and behavior of the ionospheric F2 and of the sporadic E-layer during three strong (i.e., Dst?<??100nT) individual geomagnetic storms from years 2012, 2013 and 2015, winter time period. The data was provided by the state-of the art digital ionosonde of the Széchenyi István Geophysical Observatory located at midlatitude, Nagycenk, Hungary (IAGA code: NCK, geomagnetic latitude: 46.17° geomagnetic longitude: 98.85°). The local time of the sudden commencement (SC) was used to characterize the type of the ionospheric storm (after Mendillo and Narvaez, 2010). This way two regular positive phase (RPP) ionospheric storms and one no-positive phase (NPP) storm have been analyzed. In all three cases a significant increase in electron density of the foF2 layer can be observed at dawn/early morning (around 6:00 UT, 07:00 LT). Also we can observe the fade-out of the ionospheric layers at night during the geomagnetically disturbed time periods. Our results suggest that the fade-out effect is not connected to the occurrence of the sporadic E-layers.  相似文献   
965.
In this paper, we study conditions of realization and stability of kink modes with azimuthal wave numbers m=±1 in cylindrical plasma flex with twisted magnetic field and homogeneous current along its axis. We assume permanent axial magnetic field both inside and outside the flex, surrounded by currentless plasma. Azimuthal magnetic field decreases inversely proportional to the distance from the boundary beyond the flex. We derived dispersion equations for stable and unstable modes in approximation of “thin” plasma flex. The analysis of equations has been provided for the case of discontinuous axial magnetic field on flex’s boundary. Conditions of propagation of wave modes have been defined. It was shown, that unstable modes can be implemented in certain interval of longitudinal wavenumbers. Results can be applied for the interpretation of solar magnetic tubes behavior, using measurements, provided by spacecrafts.  相似文献   
966.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
967.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
968.
The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in \({}^{3}\mbox{He}/{}^{4}\mbox{He}\) from resonant wave-particle interactions in the small “impulsive” SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio \(A/Q\), rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the “gradual” events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but \(A/Q\)-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states \(Q\) show coronal temperatures of 1–2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of \(Q\) are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of \(A/Q\), we can use abundances to deduce the probable \(Q\)-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs and from the slow solar wind as a function of the first ionization potential (FIP) of the elements, remaining differences are for the elements C, P, and S. The theory of the fractionation of ions by Alfvén waves shows that C, P, and S are suppressed because of wave resonances during chromospheric transport on closed magnetic loops but not on open magnetic fields that supply the solar wind. Shock waves can accelerate ions from closed coronal loops that easily escape as SEPs, while the solar wind must emerge on open fields.  相似文献   
969.
The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.  相似文献   
970.
Asteroids and comets are the remnants of the swarm of planetesimals from which the planets ultimately formed, and they retain records of processes that operated prior to and during planet formation. They are also likely the sources of most of the water and other volatiles accreted by Earth. In this review, we discuss the nature and probable origins of asteroids and comets based on data from remote observations, in situ measurements by spacecraft, and laboratory analyses of meteorites derived from asteroids. The asteroidal parent bodies of meteorites formed \(\leq 4\) Ma after Solar System formation while there was still a gas disk present. It seems increasingly likely that the parent bodies of meteorites spectroscopically linked with the E-, S-, M- and V-type asteroids formed sunward of Jupiter’s orbit, while those associated with C- and, possibly, D-type asteroids formed further out, beyond Jupiter but probably not beyond Saturn’s orbit. Comets formed further from the Sun than any of the meteorite parent bodies, and retain much higher abundances of interstellar material. CI and CM group meteorites are probably related to the most common C-type asteroids, and based on isotopic evidence they, rather than comets, are the most likely sources of the H and N accreted by the terrestrial planets. However, comets may have been major sources of the noble gases accreted by Earth and Venus. Possible constraints that these observations can place on models of giant planet formation and migration are explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号