全文获取类型
收费全文 | 4147篇 |
免费 | 32篇 |
国内免费 | 18篇 |
专业分类
航空 | 1710篇 |
航天技术 | 1429篇 |
综合类 | 17篇 |
航天 | 1041篇 |
出版年
2022年 | 15篇 |
2021年 | 42篇 |
2019年 | 30篇 |
2018年 | 173篇 |
2017年 | 120篇 |
2016年 | 84篇 |
2015年 | 36篇 |
2014年 | 124篇 |
2013年 | 143篇 |
2012年 | 116篇 |
2011年 | 212篇 |
2010年 | 162篇 |
2009年 | 240篇 |
2008年 | 253篇 |
2007年 | 137篇 |
2006年 | 96篇 |
2005年 | 120篇 |
2004年 | 127篇 |
2003年 | 143篇 |
2002年 | 96篇 |
2001年 | 149篇 |
2000年 | 67篇 |
1999年 | 72篇 |
1998年 | 84篇 |
1997年 | 77篇 |
1996年 | 76篇 |
1995年 | 92篇 |
1994年 | 65篇 |
1993年 | 55篇 |
1992年 | 76篇 |
1991年 | 21篇 |
1990年 | 25篇 |
1989年 | 66篇 |
1988年 | 30篇 |
1987年 | 34篇 |
1986年 | 32篇 |
1985年 | 114篇 |
1984年 | 81篇 |
1983年 | 60篇 |
1982年 | 66篇 |
1981年 | 105篇 |
1980年 | 47篇 |
1979年 | 21篇 |
1978年 | 22篇 |
1977年 | 21篇 |
1976年 | 24篇 |
1975年 | 26篇 |
1974年 | 26篇 |
1973年 | 15篇 |
1970年 | 10篇 |
排序方式: 共有4197条查询结果,搜索用时 15 毫秒
321.
Clarkson I.V.L. Pollington A.D. 《IEEE transactions on aerospace and electronic systems》2007,43(2):645-650
The case is considered in which a frequency-agile receiver (FAR) for electronic support (ES) attempts to intercept radar emissions over a wide search bandwidth. It was recently shown [1,2] that a random strategy exists in which the expected intercept time can be made arbitrarily close to linear as a function of the scan period of the radar. Can a deterministic strategy be devised in which a similar linear relationship exists for the maximum intercept time? By applying the celebrated arithmetic results of van der Waerden [3] and Szemeredi [4], we show that no such strategy is possible. 相似文献
322.
Tudoroiu N. Khorasani K. 《IEEE transactions on aerospace and electronic systems》2007,43(4):1334-1350
The main objective of this work is development and testing of a detection, isolation, and diagnosis algorithm based on interacting multiple model (IMM) filters for both partial (soft) and total (hard) reaction wheels faults in a spacecraft. This is shown to be accomplished under a number of different faulty mode scenarios for these actuators associated with the attitude control system (ACS) of a satellite. Various operating and faulty conditions due to changes and anomalies in the temperature, the power supply line voltage, and the loss of effectiveness of the torque and the current are considered in each reaction wheel associated with the three axes of the satellite. Once a fault mode is detected and isolated the recovery procedure can subsequently be engaged by invoking appropriate switching control strategies for the ACS. The application of a bank of interacting multiple Kalman filters for detection and diagnosis of anticipated reaction wheel failures in the ACS is described and developed. Compared with other model-based fault detection, diagnosis and isolation(FDDI) strategies developed in the control systems literature, our FDDI strategy is shown, through extensive numerical simulations, to be more accurate and robust with potential for extension to a number of other application areas. 相似文献
323.
Review of flow control mechanisms of leading-edge vortices 总被引:4,自引:0,他引:4
Vortex control concepts employed for slender and nonslender delta wings were reviewed. Important aspects of flow control include flow separation, vortex formation, flow reattachment, vortex breakdown, and vortex instabilities. The occurrence and relative importance of these phenomena strongly depend on the wing sweep angle. Various flow control methods were discussed: multiple vortices, control surfaces, blowing and suction, low-frequency and high-frequency excitation, feedback control, passive control with wing flexibility, and plasma actuators. For slender delta wings, control of vortex breakdown is achieved by modifications to swirl level and external pressure gradient acting on the vortex core. Effects of flow control methods on these two parameters were discussed, and their effectiveness was compared whenever possible. With the high-frequency excitation of the separated shear layer, reattachment and lift enhancement in the post-stall region is observed, which is orders of magnitude more effective than steady blowing. This effect is more pronounced for nonslender wings. Re-formation of vortices is possible with sufficient amplitude of forcing at the optimum frequency. Passive lift enhancement on flexible wings is due to the self-excited wing vibrations, which occur when the frequency of wing vibrations is close to the frequency of the shear layer instabilities, and promote flow reattachment. 相似文献
324.
V. F. Pavlov V. A. Kirpichev N. I. Yakovenko D. V. Ivanov 《Russian Aeronautics (Iz VUZ)》2007,50(4):442-445
Residual stresses and endurance strength of specimens with stress concentrators are considered. The results obtained make it possible to predict the fatigue limit of strengthened parts with concentrators in the case of tension-compression. 相似文献
325.
Yuri N. Kulikov Helmut Lammer Herbert I. M. Lichtenegger Thomas Penz Doris Breuer Tilman Spohn Rickard Lundin Helfried K. Biernat 《Space Science Reviews》2007,129(1-3):207-243
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation,
heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary
atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect
of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun
arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal
balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic
chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures
obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen
and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various
non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian
magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease
the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost
its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the
young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations
for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount
of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial
ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and
compare our findings with the results of preceding studies. 相似文献
326.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
327.
In this paper, a brief review and generalization of studies on the heat transfer and heat conduction problem in a variable
domain are presented. The equations of the process, where the boundary displacement velocity is the control, are obtained
taking into account heat inflow.
This article was submitted by the authors in English. 相似文献
328.
A. I. Belousov S. V. Falaleev A. S. Vinogradov P. V. Bondarchuk 《Russian Aeronautics (Iz VUZ)》2007,50(4):390-394
Problems arising in introduction of gasodynamic seals in aircraft engines are considered. The operation of a face gasodynamic seal as part of a natural gas pump is analyzed and its efficiency in the presence of oil is shown. 相似文献
329.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
330.
解决了褶皱结构成形时相邻的平行四边形平面元素之间连接区棱的修圆半径值预测问题。把毛坯模拟成薄板,定义了平行四边形平面元素的边界条件,采用能量法导出挠度和力函数的非线性微分方程组,利用积分-差分法实现其数值解,并提供计算结果和分析应力-应变场。采用的计算方法可用于研究毛坯的刚度参数和工艺参数对褶皱结构的形状影响。 相似文献