首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5532篇
  免费   30篇
  国内免费   29篇
航空   2611篇
航天技术   1777篇
综合类   22篇
航天   1181篇
  2021年   36篇
  2019年   38篇
  2018年   200篇
  2017年   168篇
  2016年   90篇
  2015年   42篇
  2014年   112篇
  2013年   131篇
  2012年   141篇
  2011年   300篇
  2010年   231篇
  2009年   317篇
  2008年   327篇
  2007年   242篇
  2006年   117篇
  2005年   167篇
  2004年   154篇
  2003年   156篇
  2002年   103篇
  2001年   144篇
  2000年   82篇
  1999年   102篇
  1998年   120篇
  1997年   88篇
  1996年   94篇
  1995年   122篇
  1994年   106篇
  1993年   83篇
  1992年   103篇
  1991年   42篇
  1990年   43篇
  1989年   107篇
  1988年   45篇
  1987年   43篇
  1986年   40篇
  1985年   169篇
  1984年   113篇
  1983年   93篇
  1982年   94篇
  1981年   154篇
  1980年   67篇
  1979年   41篇
  1978年   37篇
  1977年   32篇
  1976年   33篇
  1975年   46篇
  1974年   28篇
  1973年   31篇
  1970年   28篇
  1969年   32篇
排序方式: 共有5591条查询结果,搜索用时 15 毫秒
131.
The estimation of a multimodal linear system whose mode-to-mode transitions are described by a finite-state Markov chain is described. The problem has application in studying separation standards in an air traffic control environment. An optimal solution is formulated which is computationally infeasible. A suboptimal estimator is then derived which closely approximates the optimal estimator. An example is presented to illustrate the technique.  相似文献   
132.
Satellite fault diagnosis using a bank of interacting Kalman filters   总被引:3,自引:0,他引:3  
The main objective of this work is development and testing of a detection, isolation, and diagnosis algorithm based on interacting multiple model (IMM) filters for both partial (soft) and total (hard) reaction wheels faults in a spacecraft. This is shown to be accomplished under a number of different faulty mode scenarios for these actuators associated with the attitude control system (ACS) of a satellite. Various operating and faulty conditions due to changes and anomalies in the temperature, the power supply line voltage, and the loss of effectiveness of the torque and the current are considered in each reaction wheel associated with the three axes of the satellite. Once a fault mode is detected and isolated the recovery procedure can subsequently be engaged by invoking appropriate switching control strategies for the ACS. The application of a bank of interacting multiple Kalman filters for detection and diagnosis of anticipated reaction wheel failures in the ACS is described and developed. Compared with other model-based fault detection, diagnosis and isolation(FDDI) strategies developed in the control systems literature, our FDDI strategy is shown, through extensive numerical simulations, to be more accurate and robust with potential for extension to a number of other application areas.  相似文献   
133.
This paper presents a review of theoretical and experimental results on stability and other unsteady properties of aircraft wakes. The basic mechanisms responsible for the propagation and the amplification of perturbation along vortices, namely the Kelvin waves and the cooperative instabilities, are first detailed. These two generic unsteady mechanisms are described by considering asymptotic linear stability analysis of model flows such as vortex filaments or Lamb–Oseen vortices. Extension of the linear analysis to more representative flows, using a biglobal stability approach, is also described. Experimental results obtained using LDV, hot wire and PIV in wind tunnels are presented and they are commented upon the light of theory.  相似文献   
134.
Spread spectrum signaling schemes have been proposed to counter unfriendly, electrical jamming threats. In order to establish their effectiveness, such schemes must be analyzed. This work takes a step in this direction by developing the susceptibility equation, or equivalently, the probability of error, of a direct sequence/frequency hopped (DS/FH), binary differential phase-shift keying (DPSK) system when subjected to a barrage jamming signal. Specific system models are established for the receiving system as well as for the jamming signal and the spread spectrum techniques. Both partial and full band jamming strategies are considered. Graphical results are presented with the conclusions summarizing the spread spectrum effectiveness and the deficiencies of the FH processing gain definition.  相似文献   
135.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
136.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
137.
A simple and fast zero tracking algorithm for adaptive arrays with large look direction errors is presented and investigated. Basically, the algorithm is based on adjusting the complex zeroes of a power inversion array in a time-multiplexed manner to track all the sources in the environment. To preserve the desired signal which is supposed to be closest to the look direction of 0°, the algorithm removes the zero with the shortest distance to ej0 so that the directional response consists of only nulls steered at the jammers. When compared with the least mean square (LMS) algorithm employing zeroth and first-order look direction constraints, the new algorithm has about the same implementation complexity, is considerably faster, and possesses a much better signal-to-noise ratio (SNR) performance when the look direction is erroneous  相似文献   
138.
Geiss  J.  Bühler  F.  Cerutti  H.  Eberhardt  P.  Filleux  Ch.  Meister  J.  Signer  P. 《Space Science Reviews》2004,110(3-4):307-335
Space Science Reviews - The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate...  相似文献   
139.
Schunker  H.  Donea  A. -C. 《Space Science Reviews》2003,107(1-2):99-102
We present preliminary results from high resolution observations obtained with the Michelson Doppler Imager (MDI) instrument on the SOHO of two large solar flares of 14 July 2000 and 24 November 2000. We show that rapid variations of the line-of-sight magnetic field occured on a time scale of a few minutes during the flare explosions. The reversibility/irreversibility of the magnetic field of both active regions is a very good tool for understanding how the magnetic energy is released in these flares. The observed sharp increase of the magnetic energy density at the time of maximum of the solar flare could involve an unknown component which deposited supplementary energy into the system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
140.
Israel  G.  Cabane  M.  Brun  J-F.  Niemann  H.  Way  S.  Riedler  W.  Steller  M.  Raulin  F.  Coscia  D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号