首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6100篇
  免费   51篇
  国内免费   18篇
航空   2969篇
航天技术   1869篇
综合类   24篇
航天   1307篇
  2021年   52篇
  2019年   46篇
  2018年   207篇
  2017年   174篇
  2016年   105篇
  2015年   55篇
  2014年   134篇
  2013年   151篇
  2012年   167篇
  2011年   308篇
  2010年   244篇
  2009年   335篇
  2008年   356篇
  2007年   248篇
  2006年   125篇
  2005年   182篇
  2004年   151篇
  2003年   181篇
  2002年   115篇
  2001年   186篇
  2000年   100篇
  1999年   124篇
  1998年   145篇
  1997年   110篇
  1996年   123篇
  1995年   168篇
  1994年   129篇
  1993年   93篇
  1992年   129篇
  1991年   44篇
  1990年   54篇
  1989年   120篇
  1988年   59篇
  1987年   52篇
  1986年   46篇
  1985年   145篇
  1984年   126篇
  1983年   109篇
  1982年   114篇
  1981年   140篇
  1980年   57篇
  1979年   42篇
  1978年   43篇
  1977年   35篇
  1976年   35篇
  1975年   48篇
  1974年   34篇
  1973年   24篇
  1972年   38篇
  1971年   23篇
排序方式: 共有6169条查询结果,搜索用时 31 毫秒
131.
In this work we have tracked coronal mass ejections observed with the ground based Mirror Coronagraph for Argentina (MICA) and the Large Angle and Spectroscopic Coronagraph (LASCO) C2 and C3 on board of the Solar and Heliospheric Observatory (SOHO). The MICA telescope is located at El Leoncito (31.8 S, 69.3 W), San Juan (Argentina), since 1997 as part of a bilateral scientific project between Germany and Argentina. SOHO is a project of international cooperation between ESA and NASA. Together these instruments are able to observe the solar corona ranging from 1.05 to 32 solar radii. MICA images the Fe XIV emission line corona and LASCO coronagraphs observe the Thomson scattered white light corona. We have selected events for which there are observations from the three coronagraphs. Using the composite data we were able to obtain height-time diagrams for the corresponding dynamical coronal features traveling outwards in order to determine some of their kinematical properties, i.e., plane of sky velocity and acceleration.  相似文献   
132.
The problem of surface tension-driven flows in horizontal liquid layers has been studied experimentally, and theoretically by direct numerical simulation and small perturbation analysis. We focus our attention on situations in which the depth of the fluid (liquid tin; small Prandtl number, Pr=0.015) is small enough to ensure the predominance of the surface tension forces over those due to the buoyancy. The surface velocity has been experimentally obtained for liquid tin layer with various aspect ratio (length to height) in the range 5<A<83. The thermal gradients are ranged from 5 to 40°K/cm. In the numerical study, the Navier-Stokes and energy equations are solved by an efficient finite difference technique. The parameters governing the flow behaviour in the liquid are varied to determine their effects on thermocapillary convection: the Reynolds number 10<Re<2104 and the aspect ratio 2<A<25; with Pr kept constant at Pr=0.015. The linear eigenequation resulting from small spatial disturbances of the Couette flow solution is solved using an Tau-Chebyshev approximation. A notable feature of the theoretical study is the totally different end circulations. In the region near the cold wall a multicell structure is evident. This agrees with the eigensolution which is of complex type, indicating spatial periodicity. In the hot wall region the flow is accelerated to reach the velocity value for the fully-developed Couette flow which is reached under conditions such as Re/A<20. The transition from viscous to boundary layer regime occurs for a critical value (Re/A)c of nearly about 200, as deduced from the numerical and experimental results.  相似文献   
133.
We present a preliminary version of a potential tool for real time proton flux prediction which provides proton flux profiles and cumulative fluence profiles at 0.5 and 2 MeV of solar energetic particle events, from their onset up to the arrival of the interplanetary shock at the spacecraft position (located at 1 or 0.4 AU). Based on the proton transportation model by Lario et al. [Lario, D., Sanahuja, B., Heras, A.M. Energetic particle events: efficiency of interplanetary shocks as 50 keV E < 100 MeV proton accelerators. Astrophys. J. 509, 415–434, 1998] and the magnetohydrodynamic shock propagation model of Wu et al. [Wu, S.T., Dryer, M., Han, S.M. Non-planar MHD model for solar flare-generated disturbances in the Heliospheric equatorial plane. Sol. Phys. 84, 395–418, 1983], we have generated a database containing “synthetic” profiles of the proton fluxes and cumulative fluences of 384 solar energetic particle events. We are currently validating the applicability of this code for space weather forecasting by comparing the resulting “synthetic” flux profiles with those of several real events.  相似文献   
134.
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se.  相似文献   
135.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   
136.
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber ("lung") permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.  相似文献   
137.
An analysis of the experimental data available and of the present theoretical concepts shows that even the initial physicochemical chemical precellular stages of biological evolution are impossible in the interstellar medium, while biomonomers possibly formed on asteroids and comets might have participated after transportation to the Earth in the final stages of the origin of the first precellular biological structures and then in the first living cells.  相似文献   
138.
139.
The use of charge-coupled devices is suggested as a means for detecting growth of micro-organism colonies. The accuracy of the method is determined by channel width and the sensitivity by the signal/noise ratio. The method was tested on a dense nutrient medium, which is to be considered more suitable to micro-organisms of the dry Martian soil than the water solution of nutrients employed in the Viking's strategy.  相似文献   
140.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号