全文获取类型
收费全文 | 566篇 |
免费 | 3篇 |
国内免费 | 8篇 |
专业分类
航空 | 221篇 |
航天技术 | 211篇 |
综合类 | 1篇 |
航天 | 144篇 |
出版年
2021年 | 8篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 14篇 |
2017年 | 9篇 |
2016年 | 5篇 |
2015年 | 5篇 |
2014年 | 22篇 |
2013年 | 35篇 |
2012年 | 23篇 |
2011年 | 42篇 |
2010年 | 25篇 |
2009年 | 32篇 |
2008年 | 47篇 |
2007年 | 19篇 |
2006年 | 16篇 |
2005年 | 29篇 |
2004年 | 15篇 |
2003年 | 19篇 |
2002年 | 13篇 |
2001年 | 14篇 |
2000年 | 3篇 |
1999年 | 5篇 |
1998年 | 11篇 |
1997年 | 5篇 |
1996年 | 5篇 |
1995年 | 12篇 |
1994年 | 4篇 |
1992年 | 11篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 7篇 |
1988年 | 7篇 |
1987年 | 8篇 |
1986年 | 8篇 |
1985年 | 13篇 |
1984年 | 12篇 |
1983年 | 11篇 |
1982年 | 9篇 |
1981年 | 14篇 |
1980年 | 5篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1973年 | 3篇 |
1972年 | 2篇 |
1971年 | 4篇 |
1970年 | 2篇 |
1969年 | 2篇 |
1967年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有577条查询结果,搜索用时 28 毫秒
131.
132.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation 总被引:1,自引:0,他引:1
Kenneth S. Edgett R. Aileen Yingst Michael A. Ravine Michael A. Caplinger Justin N. Maki F. Tony Ghaemi Jacob A. Schaffner James F. Bell III Laurence J. Edwards Kenneth E. Herkenhoff Ezat Heydari Linda C. Kah Mark T. Lemmon Michelle E. Minitti Timothy S. Olson Timothy J. Parker Scott K. Rowland Juergen Schieber Robert J. Sullivan Dawn Y. Sumner Peter C. Thomas Elsa H. Jensen John J. Simmonds Aaron J. Sengstacken Reg G. Willson Walter Goetz 《Space Science Reviews》2012,170(1-4):259-317
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage. 相似文献
133.
134.
135.
On 14 July 1998 TRACE observed transverse oscillations of a coronal loop generated by an external disturbance most probably caused by a solar flare. These oscillations were interpreted as standing fast kink waves in a magnetic flux tube. Firstly, in this review we embark on the discussion of the theory of waves and oscillations in a homogeneous straight magnetic cylinder with the particular emphasis on fast kink waves. Next, we consider the effects of stratification, loop expansion, loop curvature, non-circular cross-section, loop shape and magnetic twist. An important property of observed transverse coronal loop oscillations is their fast damping. We briefly review the different mechanisms suggested for explaining the rapid damping phenomenon. After that we concentrate on damping due to resonant absorption. We describe the latest analytical results obtained with the use of thin transition layer approximation, and then compare these results with numerical findings obtained for arbitrary density variation inside the flux tube. Very often collective oscillations of an array of coronal magnetic loops are observed. It is natural to start studying this phenomenon from the system of two coronal loops. We describe very recent analytical and numerical results of studying collective oscillations of two parallel homogeneous coronal loops. The implication of the theoretical results for coronal seismology is briefly discussed. We describe the estimates of magnetic field magnitude obtained from the observed fundamental frequency of oscillations, and the estimates of the coronal scale height obtained using the simultaneous observations of the fundamental frequency and the frequency of the first overtone of kink oscillations. In the last part of the review we summarise the most outstanding and acute problems in the theory of the coronal loop transverse oscillations. 相似文献
136.
Michael F. A’Hearn 《Space Science Reviews》2008,138(1-4):237-246
The Deep Impact mission revealed many properties of comet Tempel 1, a typical comet from the Jupiter family in so far as any comet can be considered typical. In addition to the properties revealed by the impact itself, numerous properties were also discovered from observations prior to the impact just because they were the types of observations that had never been made before. The impact showed that the cometary nucleus was very weak at scales from the impactor diameter (~1 m) to the crater diameter (~100 m) and suggested that the strength was low at much smaller scales as well. The impact also showed that the cometary nucleus is extremely porous and that the ice was close to the surface but below a devolatilized layer with thickness of order the impactor diameter. The ambient observations showed a huge range of topography, implying ubiquitous layering on many spatial scales, frequent (more than once a week) natural outbursts, many of them correlated with rotational phase, a nuclear surface with many features that are best interpreted as impact craters, and clear chemical heterogeneity in the outgassing from the nucleus. 相似文献
137.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ~2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time. 相似文献
138.
A recursive method for calculating decoupling zeroes in the linear multiconnected dynamic system based on the application of matrix canonization techniques is proposed. Its essence is that the problem dimension is successively decreased and reduced to finding eigenvalues of some matrix. The results obtained can be used to check controllability and observability as well as to calculate uncontrollable and unobservable modes of the dynamic system. 相似文献
139.
G. Zimbardo A. Greco L. Sorriso-Valvo S. Perri Z. Vörös G. Aburjania K. Chargazia O. Alexandrova 《Space Science Reviews》2010,156(1-4):89-134
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations. 相似文献
140.
G. Randall Gladstone Steven C. Persyn John S. Eterno Brandon C. Walther David C. Slater Michael W. Davis Maarten H. Versteeg Kristian B. Persson Michael K. Young Gregory J. Dirks Anthony O. Sawka Jessica Tumlinson Henry Sykes John Beshears Cherie L. Rhoad James P. Cravens Gregory S. Winters Robert A. Klar Walter Lockhart Benjamin M. Piepgrass Thomas K. Greathouse Bradley J. Trantham Philip M. Wilcox Matthew W. Jackson Oswald H. W. Siegmund John V. Vallerga Rick Raffanti Adrian Martin J.-C. Gérard Denis C. Grodent Bertrand Bonfond Benoit Marquet François Denis 《Space Science Reviews》2017,213(1-4):447-473
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS. 相似文献