首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3377篇
  免费   7篇
  国内免费   13篇
航空   1758篇
航天技术   1127篇
综合类   9篇
航天   503篇
  2019年   17篇
  2018年   45篇
  2017年   23篇
  2016年   21篇
  2015年   18篇
  2014年   64篇
  2013年   94篇
  2012年   70篇
  2011年   131篇
  2010年   92篇
  2009年   127篇
  2008年   191篇
  2007年   98篇
  2006年   67篇
  2005年   90篇
  2004年   85篇
  2003年   111篇
  2002年   58篇
  2001年   104篇
  2000年   49篇
  1999年   82篇
  1998年   95篇
  1997年   76篇
  1996年   93篇
  1995年   125篇
  1994年   99篇
  1993年   66篇
  1992年   104篇
  1991年   44篇
  1990年   36篇
  1989年   88篇
  1988年   35篇
  1987年   31篇
  1986年   37篇
  1985年   92篇
  1984年   91篇
  1983年   62篇
  1982年   82篇
  1981年   93篇
  1980年   37篇
  1979年   43篇
  1978年   33篇
  1977年   22篇
  1976年   21篇
  1975年   38篇
  1974年   24篇
  1973年   20篇
  1972年   29篇
  1969年   17篇
  1967年   20篇
排序方式: 共有3397条查询结果,搜索用时 31 毫秒
991.
ARTEMIS Science Objectives   总被引:1,自引:0,他引:1  
NASA??s two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth??s magnetotail; reconnection, particle acceleration, and turbulence in the Earth??s magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives.  相似文献   
992.
The Heavy Ion Counter on the Galileo spacecraft will monitor energetic heavy nuclei of the elements from C to Ni, with energies from 6 to 200 MeV nucl-1. The instrument will provide measurements of trapped heavy ions in the Jovian magnetosphere, including those high-energy heavy ions with the potential for affecting the operation of the spacecraft electronic circuitry. We describe the instrument, which is a modified version of the Voyager CRS instrument.  相似文献   
993.
994.
We calculate the conditions of pickup protons inside the termination shock. Outside 50 AU the partial pressure of pickup protons is greater than the magnetic pressure by a factor of > 10, and greater than the partial pressure of solar wind protons by a factor of > 100. Thus, pickup protons have a significant dynamical influence on the structures of the solar wind in the outer heliosphere.  相似文献   
995.
用于粘性可压缩流动数值计算的SIMPLE方法   总被引:2,自引:1,他引:2  
对SIMPLE方法加以推广,使之适用于可压缩粘性流动的数值计算。采用非交错网格技术,推出三维任意曲线坐标系下可压缩形式SIMPLE方法的计算方程。对亚音速、跨音速及超音速等5个流场进行了数值计算并与有关文献及实验数据进行比较。   相似文献   
996.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
997.
THE DIGITAL WAVE-PROCESSING EXPERIMENT ON CLUSTER   总被引:1,自引:0,他引:1  
The wide variety of geophysical plasmas that will be investigated by the Cluster mission contain waves with a frequency range from DC to over 100 kHz with both magnetic and electric components. The characteristic duration of these waves extends from a few milliseconds to minutes and a dynamic range of over 90 dB is desired. All of these factors make it essential that the on-board control system for the Wave-Experiment Consortium (WEC) instruments be flexible so as to make effective use of the limited spacecraft resources of power and telemetry-information bandwidth. The Digital Wave Processing Experiment, (DWP), will be flown on Cluster satellites as a component of the WEC. DWP will coordinate WEC measurements as well as perform particle correlations in order to permit the direct study of wave/particle interactions. The DWP instrument employs a novel architecture based on the use of transputers with parallel processing and re-allocatable tasks to provide a high-reliability system. Members of the DWP team are also providing sophisticated electrical ground support equipment, for use during development and testing by the WEC. This is described further in Pedersen et al. (this issue).  相似文献   
998.
999.
Kuhn  J.R.  Floyd  L.  Fröhlich  C.  Pap  J.M. 《Space Science Reviews》2000,94(1-2):169-176

Despite 20 years of total solar irradiance measurements from space, the lack of high precision spatially resolved observations limits definitive answers to even simple questions like ``Are the solar irradiance changes caused solely by magnetic fields perturbing the radiative flux at the photosphere?" More subtle questions like how the aspheric structure of the sun changes with the magnetic cycle are only now beginning to be addressed with new tools like p-mode helioseismology. Solar 5-min oscillation studies have yielded precise information on the mean radial interior solar structure and some knowledge about the rotational and thermal solar asphericity. Unfortunately this progress has not been enough to generate a self-consistent theory for why the solar irradiance and luminosity vary with the magnetic cycle. We need sharper tools to describe and understand the sun's global aspheric response to its internal dynamo, and we need to be able to measure the solar cycle manifestation of the magnetic cycle on entropy transport from the interior to the photosphere in much the same way that we study the fundamentally more complex problem of magnetic flux transport from the solar interior. A space experiment called the Solar Physics Explorer for Radius, Irradiance and Shape (SPHERIS) and in particular its Astrometric and Photometric Telescope (APT) component will accomplish these goals.

  相似文献   
1000.
A procedure based on the envelope concept of differential geometry is described that permits the reconstruction of the contour of a smooth, moving, conducting target, satisfying the geometrical optics approximation. The target reflections are assumed to be specular in nature with either one reflection point or multiple resolvable reflection points. The time variation of the range to the reflection point of the target (assumed derivable from a high-resolution radar) and the general motion of the target (assumed derivable from tracking or trajectory information) are employed to reconstruct the contour of that portion of the assumed target surface that is illuminated by the radar. The reconstruction is accomplished by the simultaneous solution of two nonlinear differential equations which are derived using the envelope concept of differential geometry. Several reconstruction examples based on computer analysis are presented which indicate the results obtainable using this method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号