首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   27篇
航天技术   3篇
  2013年   2篇
  2012年   3篇
  2008年   3篇
  2007年   8篇
  2006年   1篇
  2003年   1篇
  2001年   3篇
  1998年   7篇
  1996年   1篇
  1994年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
21.
The IMPACT (In situ Measurements of Particles And CME Transients) investigation on the STEREO mission was designed and developed to provide multipoint solar wind and suprathermal electron, interplanetary magnetic field, and solar energetic particle information required to unravel the nature of coronal mass ejections and their heliospheric consequences. IMPACT consists of seven individual sensors which are packaged into a boom suite, and a SEP suite. This review summarizes the science objectives of IMPACT, the instruments that comprise the IMPACT investigation, the accommodation of IMPACT on the STEREO twin spacecraft, and the overall data products that will flow from the IMPACT measurements. Accompanying papers in this volume of Space Science Reviews highlight the individual sensor technical details and capabilities, STEREO project plans for the use of IMPACT data, and modeling activities for IMPACT (and other STEREO) data interpretation.  相似文献   
22.
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value.  相似文献   
23.
Data from ACE and GOES have been used to measure Solar Energetic Particle (SEP) fluence spectra for H, He, O, and Fe, over the period from October 1997 to December 2005. The measurements were made by four instruments on ACE and the EPS sensor on three GOES satellites and extend in energy from ∼0.1 MeV/nuc to ∼100 MeV/nuc. Fluence spectra for each species were fit by conventional forms and used to investigate how the intensities, composition, and spectral shapes vary from year to year.  相似文献   
24.
There are a number of radioactive clocks in the cosmic radiation that can be used to measure the time scales for cosmic ray processes in the Galaxy. With high-resolution isotope measurements available from ACE it is now possible to read these clocks with greatly improved accuracy and address key questions about the origin and lifetime of cosmic rays. This paper discusses the status of three such investigations.  相似文献   
25.
The galactic cosmic rays arriving near Earth, which include both stable and long-lived nuclides from throughout the periodic table, consist of a mix of stellar nucleosynthesis products accelerated by shocks in the interstellar medium (ISM) and fragmentation products made by high-energy collisions during propagation through the ISM. Through the study of the composition and spectra of a variety of elements and isotopes in this diverse sample, models have been developed for the origin, acceleration, and transport of galactic cosmic rays. We present an overview of the current understanding of these topics emphasizing the insights that have been gained through investigations in the charge and energy ranges Z≲30 and E/M≲1 GeV/nuc, and particularly those using data obtained from the Cosmic Ray Isotope Spectrometer on NASA’s Advanced Composition Explorer mission.  相似文献   
26.
Measurements of the anomalous cosmic ray (ACR) isotopic composition have been made in three regions of the magnetosphere accessible from the polar Earth orbit of SAMPEX, including the interplanetary medium at high latitudes and geomagnetically trapped ACRs. At those latitudes where ACRs can penetrate the Earth's magnetic field while fully stripped galactic cosmic rays (GCRs) of similar energies are excluded, a pure ACR sample is observed to have the following composition: 15N/N < 0.023, 18O/16O < 0.0034, and 22Ne/20Ne = 0.077(+0.085, –0.023). We compare our values with those found by previous investigators and with those measured in other samples of solar and galactic material. In particular, a comparison of 22Ne/20Ne measurements from various sources implies that GCRs are not simply an accelerated sample of the local interstellar medium.  相似文献   
27.
Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ∼0.1–60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The Fe/O ratio decreases with increasing energy up to ∼10 MeV/nuc in ∼92% of the events and up to ∼60 MeV/nuc in ∼64% of the events. (2) The rare isotope 3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (3) The heavy ion abundances are not systematically organized by the ion’s M/Q ratio when compared with the solar wind values. (4) Heavy ion abundances from C–Fe exhibit systematic M/Q-dependent enhancements that are remarkably similar to those seen in 3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ∼60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion’s mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process.  相似文献   
28.
The Advanced Composition Explorer   总被引:2,自引:0,他引:2  
Stone  E.C.  Frandsen  A.M.  Mewaldt  R.A.  Christian  E.R.  Margolies  D.  Ormes  J.F.  Snow  F. 《Space Science Reviews》1998,86(1-4):1-22
The Advanced Composition Explorer was launched August 25, 1997 carrying six high-resolution spectrometers that measure the elemental, isotopic, and ionic charge-state composition of nuclei from H to Ni (1≤Z≤28) from solar wind energies (∼1 keV nucl−1) to galactic cosmic-ray energies (∼500 MeV nucl−1). Data from these instruments is being used to measure and compare the elemental and isotopic composition of the solar corona, the nearby interstellar medium, and the Galaxy, and to study particle acceleration processes that occur in a wide range of environments. ACE also carries three instruments that provide the heliospheric context for ion composition studies by monitoring the state of the interplanetary medium. From its orbit about the Sun-Earth libration point ∼1.5 million km sunward of Earth, ACE also provides real-time solar wind measurements to NOAA for use in forecasting space weather. This paper provides an introduction to the ACE mission, including overviews of the scientific goals and objectives, the instrument payload, and the spacecraft and ground systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
29.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  Trexel  H.  von Rosenvinge  T.T.  Binns  W.R.  Crary  D.J.  Dowkontt  P.  Epstein  J.  Hink  P.L.  Klarmann  J.  Lijowski  M.  Olevitch  M.A. 《Space Science Reviews》1998,86(1-4):285-356
The Cosmic-Ray Isotope Spectrometer is designed to cover the highest decade of the Advanced Composition Explorer's energy interval, from ∼50 to ∼500 MeV nucl−1, with isotopic resolution for elements from Z≃2 to Z≃30. The nuclei detected in this energy interval are predominantly cosmic rays originating in our Galaxy. This sample of galactic matter can be used to investigate the nucleosynthesis of the parent material, as well as fractionation, acceleration, and transport processes that these particles undergo in the Galaxy and in the interplanetary medium. Charge and mass identification with CRIS is based on multiple measurements of dE/dx and total energy in stacks of silicon detectors, and trajectory measurements in a scintillating optical fiber trajectory (SOFT) hodoscope. The instrument has a geometrical factor of ∼r250 cm2 sr for isotope measurements, and should accumulate ∼5×106 stopping heavy nuclei (Z>2) in two years of data collection under solar minimum conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
30.
The High Energy Telescope for STEREO   总被引:1,自引:0,他引:1  
The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ~13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ~100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ~0.7–6 MeV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号